Fachbereich AKTUELL

FBHL-005

Sachgebiet Intralogistik und Handel

Kohlenmonoxid bei Transport und Lagerung von Holzpellets im gewerblichen Gebrauch

Stand: 01.07.2017

Holzpellets sind ein international gehandelter Brennstoff für die Energiegewinnung aus nachwachsenden Rohstoffen, der auf Grund seiner CO₂-Neutralität sowohl bei Privat- als auch gewerblichen Kunden zunehmend eingesetzt wird. Der jährliche Verbrauch an Holzpellets beträgt in der Europäischen Union rund 19 Millionen Tonnen (Stand 2015), die entlang der Logistikkette mehrfach umgeschlagen werden. Den chemischen Eigenschaften dieses relativ neuen Brennstoffes wurde hinsichtlich seines Verhaltens bei der Lagerung in der Vergangenheit keine besondere Aufmerksamkeit geschenkt.

Seit 2002 ereigneten sich in Europa mehrere tödliche Kohlenmonoxid-Vergiftungen, die im unmittelbaren Zusammenhang mit Tätigkeiten bei Transport und Lagerung von Holzpellets stehen. Bisher waren Rückströmungen von Rauchgasen aus der Heizung in den Lagerraum als Ursache für Kohlenmonoxid-Vergiftungen bekannt. Neuere Forschungsergebnisse zeigen, dass auch die Reaktion von Holzinhaltstoffen mit dem umgebenden Luftsauerstoff für hohe Kohlenmonoxid-Konzentrationen verantwortlich sein kann. Messungen im Bereich von Pelletlagern belegen, dass entlang der gesamten Logistikkette bei der Lagerung von Holzpellets in abgeschlossenen Räumen lebensbedrohliche Konzentrationen von Kohlenmonoxid (CO) entstehen können.

Inhalt

1	Toxische Wirkung von Kohlenmonoxid (CO)	2
2	Arbeitsplatzgrenzwert für CO	2
3	Mechanismus der CO-Entstehung	2
4	Untersuchungsergebnisse der Unfallversicherungsträger	3

1 Toxische Wirkung von Kohlenmonoxid (CO)

Kohlenmonoxid ist ein farb-, geruch- und geschmackloses giftiges Gas ohne Reizwirkung von etwa gleichem spezifischem Gewicht wie Luft. Es entsteht bei der unvollständigen Oxidation von kohlenstoffhaltigen Substanzen. Kommt CO über die Atmung ins Blut, bindet es sich sehr fest an den roten Blutfarbstoff Hämoglobin, der als Hauptaufgabe den Sauerstofftransport sicherstellen soll. Die Verbindung aus CO und Hämoglobin wird als Carboxyhämoglobin (CO-Hb) bezeichnet. Ab einem Anteil von ~60% CO-Hb im Blut ist der Sauerstofftransport des Blutes im Körper so stark gehemmt, dass der Tod durch Ersticken eintritt. Der Anteil von CO-Hb im Blut und damit der Grad der Vergiftung mit CO ist u.a. abhängig von der Dauer der Exposition und von der Höhe der Konzentration an CO in der Umgebungsluft.

Exposition		Auswirkung	
100 ppm	über 3 h	Kopfschmerzen, Schwindel und Übelkeit	
300 ppm	über 1 h über 3 h	Kopfschmerzen, Schwindel und Übelkeit Bewusstlosigkeit	
800 ppm	über 45 min über 1 - 2 h über 2 - 3 h	Kopfschmerzen, Schwindel und Übelkeit Bewusstlosigkeit	
3.200 ppm	über 5 - 10 min über 10 - 20 min über 1 h	Kopfschmerzen, Schwindel und Übelkeit Bewusstlosigkeit	

Tabelle 1: Toxische Wirkungen von CO auf den menschlichen Organismus

2 Arbeitsplatzgrenzwert für CO

Für CO gibt es in der Technischen Regel für Gefahrstoffe (TRGS) 900 "Arbeitsplatzgrenzwerte" folgenden Arbeitsplatzgrenzwert (AGW):

Arbeitspl	Arbeitsplatzgrenzwert		
30 ppm	35 mg/m ³	8 h	AGW
60 ppm	70 mg/m ³	Maximal 4-mal 15 Minuten pro Ar- beitsschicht (8 h)	Kurz- zeitwert

Tabelle 2: Arbeitsplatzgrenzwert von CO

3 Mechanismus der CO-Entstehung

Für die Produktion von Holzpellets werden sowohl Rundholz als auch Sägespäne oder Hackschnitzel aus Sägewerken, überwiegend von Nadelhölzern, verwendet. Diese werden getrocknet, zerkleinert und dann - nach eventueller Zugabe von Zuschlagstoffen - unter hohem mechanischen Druck und hoher Temperatur in Pressen zu Pellets komprimiert. Dabei verändern sich die im Holz vorhandenen Strukturen und die eingeschlossenen Fettsäuren können verstärkt mit Luftsauerstoff in Kontakt kommen und reagieren. Bei diesen unter Umständen über mehrere Wochen und Monate ablaufenden Reaktionen zwischen Holzinhaltsstoffen und umgebendem Luftsauerstoff entstehen verschiedene Kohlenstoffverbindungen, insbesondere CO. Die Reaktionsgeschwindigkeit und damit die Emission ist von der Temperatur abhängig. Hohe Extraktstoffgehalte im Ausgangsmaterial (z. B. Kiefernholz) und hohe Lagertemperaturen (ab 40°C) begünstigen diesen Autoxidationsprozess.

4 Untersuchungsergebnisse der Unfallversicherungsträger

Im Rahmen des Messprogramms 9179 "CO aus Holzpellets" wurde im Messsystem Gefährdungsermittlung der Unfallversicherungsträger - MGU in den Jahren 2014-2016 die inhalative Exposition gegenüber CO entlang der gesamten Lieferkette in Lagern und Silos beim Hersteller, Händler und Endverbraucher untersucht. Insgesamt wurden in 26 Betriebsstätten mehr als 250 Messungen durchgeführt.

Hersteller/Handel

Der Großteil der Messungen erfolgte im Bereich der Hersteller und des Handels. Dabei zeigte sich, dass sowohl in leeren als auch in (teil-)befüllten Silos mit einer vielfachen Überschreitung des Arbeitsplatzgrenzwertes (Außensilos bis zu 360 mg/m³, Innensilos bis zu 1100 mg/m³) zu rechnen ist. Dies gilt auch für den Bereich direkt unterhalb geöffneter Luken.

Bei Herstellern von Holzpellets wurden ergänzend zu den Silos auch angrenzende Arbeitsbereiche wie zum Beispiel Elevatorsümpfe oder Schaltwarten bemessen. Die Messwerte lagen durchgängig unterhalb des AGW.

Im Handel erfolgt die Lagerung von Holzpellets nicht nur in Silos. Bei der ebenfalls anzutreffenden Lagerung in loser Schüttung lagen die Messwerte durchgängig im unkritischen Bereich unterhalb eines Zehntels des AGW.

Endverbraucher

Bei der Lagerung von Holzpellets beim Endverbraucher wurden ebenfalls Überschreitungen des AGW gemessen. Dies betrifft insbesondere Wartungspersonal wie Hausmeister, Heizungsinstallateure oder Elektriker. Im Falle von Funktionsstörungen, Undichtigkeiten oder mangelhafter Wartung der Heizungsanlage kann es zudem durch Rückströmungen von Rauchgasen in Lagerräume zu einem zusätzlichen massiven CO-Eintrag kommen. Diese Ereignisse wurden in diesem Messprogramm nicht erfasst, führten aber in der Vergangenheit bereits zu mehreren tödlichen Unfällen.

Was ist zu tun?

Im Rahmen der betrieblichen Gefährdungsbeurteilung ist sicherzustellen, dass Beschäftigte keinen gefährlichen CO-Konzentrationen ausgesetzt werden. Bereiche mit erhöhter CO-Konzentration sind daher beispielsweise durch geeignete Messverfahren zu identifizieren und nach Gefahrstoff-Verordnung zu kennzeichnen (Bild 1). Ergänzend können die Warnhinweisschilder nach Anhang A der VDI 3464 verwendet werden.

Kohlenmonoxid (CO)

Giftig beim Einatmen Schädigt die Organe bei längerer oder wiederholter Exposition

Vor dem Betreten für ausreichende Lüftung sorgen

Bild 1: Kennzeichnung von Bereichen mit erhöhter CO-Konzentration

Bild 2: Ventilator, ca. 10.000m3/h

Der Arbeitgeber hat sicherzustellen, dass Belüftungseinrichtungen und -verfahren zum effizienten Belüften zur Verfügung stehen. In Lagern bis etwa 10 t reicht in der Regel eine natürliche Lüftung (z. B. belüftende Deckel) aus. Ansonsten, insbesondere in Erdlagern oder bei ungünstiger Lage, ist eine technische Lüftung erforderlich.

Die Belüftung soll durch Einblasen erfolgen, um zu vermeiden, dass Rauchgase/CO aus einer evtl. vorhandenen Heizung angesaugt werden. Beim Einblasen ist eine weitere Öffnung für den Druckausgleich erforderlich.

Häufig wird eine Lüftungsdauer von mindestens 15 Minuten genannt. Dabei ist zu beachten, dass die tatsächlich erforderliche Belüftungsdauer von verschiedenen Faktoren und Randbedingungen abhängt, z. B. Lagervolumen, Füllstand, Lager- und Umgebungstemperatur, Lagerdauer und Leistung des Ventilators, und damit länger sein kann.

Freigabeverfahren vor Betreten von Bereichen mit erhöhter CO-Konzentration

Für sämtliche Tätigkeiten (z. B. Kontrollgänge, Reparaturen, Reinigung) innerhalb dieser Bereiche ist für die Beschäftigten ein betriebliches Freigabeverfahren zu etablieren:

- Vor Betreten sind Lüftungsmaßnahmen so lange durchzuführen bis der AGW für CO unterschritten ist (Freimessen).
- Bereitstellen und Mitnahme tragbarer Personenwarngeräte für CO (regelmäßige Kalibrierung beachten!) für Instandhalter, Reinigungskräfte, etc.
- Bei Erdlagern und Silos ist ein Sicherungsposten außerhalb des Gefahrenbereichs vorzuhalten, der während der gesamten Aufenthaltsdauer im Gefahrenbereich (Sicht-)Kontakt zu den einfahrenden Beschäftigten hält und im Notfall Rettungsmaßnahmen einleiten kann. Der Sicherungsposten und die einfahrenden Beschäftigten sind zu unterweisen. Bei anderen Lagern ist eine weitere Person als zusätzliche Sicherung zu empfehlen.

Literatur:

[1] Waltraud Emhofer & Christian Pointner, Lagertechnik und Sicherheit bei der Pelletslagerung, bioenergy 2020+, September 2009

- [2] Abschlussbericht zur Sonderaktion "Lagerung von Holzpellets", Staatsministerium für Wirtschaft, Arbeit und Verkehr des Freistaates Sachsen, Februar-Mai 2013
- [3] Verordnung (EG) Nr. 1272/2008 über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen (CLP-Verordnung)
- [4] Verordnung zum Schutz vor Gefahrstoffen (Gefahrstoffverordnung)
- [5] TRGS 900 "Arbeitsplatzgrenzwerte"
- [6] DGUV Information 209-083 "Silos für das Lagern von Holzstaub und –spänen Bauliche Gestaltung und Betrieb", Juni 2015
- [7] VDI 3464 "Lagerung von Holzpellets beim Verbraucher Anforderungen an Lager sowie Herstellung und Anlieferung der Pellets unter Gesundheits- und Sicherheitsaspekten", September 2015

Bildnachweis:

Die in dieser DGUV-Information des FB HL gezeigten Bilder wurden freundlicherweise zur Verfügung gestellt von:

Bild 2, AnitaE - Fotolia.com

Herausgeber

Deutsche Gesetzliche Unfallversicherung e.V. (DGUV)

Glinkastraße 40 10117 Berlin

Telefon: 030 13001-0 (Zentrale)

Fax: 030 13001-6132 E-Mail: info@dguv.de Internet: www.dguv.de

Sachgebiet "Intralogistik und Handel" im Fachbereich "Handel und Logistik"

der DGUV > www.dguv.de Webcode: d927103