DIN EN 1994-1-2

ICS 13.220.50; 91.010.30; 91.080.10; 91.080.40

Siehe Änderung 1

Ersatz für DIN EN 1994-1-2:2006-11 und DIN EN 1994-1-2 Berichtigung 1:2008-11

Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton –

Teil 1-2: Allgemeine Regeln – Tragwerksbemessung für den Brandfall; Deutsche Fassung EN 1994-1-2:2005 + AC:2008

Eurocode 4: Design of composite steel and concrete structures – Part 1-2: General rules – Structural fire design; German version EN 1994-1-2:2005 + AC:2008

Eurocode 4: Calcul des structures mixtes acier-béton – Partie 1-2: Règles générales – Calcul du comportement au feu; Version allemande EN 1994-1-2:2005 + AC:2008

Gesamtumfang 123 Seiten

Normenausschuss Bauwesen (NABau) im DIN

DIN EN 1994-1-2:2010-12

Nationales Vorwort

Diese Europäische Norm (EN 1994-1-2:2005 + AC:2008) wurde vom Technischen Komitee CEN/TC 250 "Eurocodes für den konstruktiven Ingenieurbau" erarbeitet, dessen Sekretariat vom BSI (Vereinigtes Königreich) gehalten wird.

Im DIN Deutsches Institut für Normung e. V. ist hierfür der Arbeitsausschuss NA 005-52-22 AA "Konstruktiver baulicher Brandschutz" des Normenausschusses Bauwesen (NABau) zuständig.

Die Norm ist Bestandteil einer Reihe von Einwirkungs- und Bemessungsnormen, deren Anwendung nur im Paket sinnvoll ist. Dieser Tatsache wird durch das Leitpapier L der Kommission der Europäischen Union für die Anwendung der Eurocodes Rechnung getragen, in dem Übergangsfristen für die verbindliche Umsetzung der Eurocodes in den Mitgliedstaaten vorgesehen sind. Die im Vorwort dieser Europäischen Norm angegebenen Fristen korrelieren in etwa mit diesen Übergangsfristen.

Die Anwendung dieser Norm gilt in Deutschland in Verbindung mit dem Nationalen Anhang.

Es wird auf die Möglichkeit hingewiesen, dass einige Texte dieses Dokuments Patentrechte berühren können. Das DIN [und/oder die DKE] sind nicht dafür verantwortlich, einige oder alle diesbezüglichen Patentrechte zu identifizieren.

In Abhängigkeit von der Bedeutung der einzelnen Absätze wird in dieser Norm zwischen verbindlichen Regeln und Anwendungsregeln unterschieden (siehe auch 1.4 dieser Europäischen Norm). Die verbindlichen Regeln sind durch den Buchstaben P nach der Nummer des Absatzes gekennzeichnet, z. B. (1)P. Bei allen Absätzen, die nicht als verbindliche Regeln gekennzeichnet sind, handelt es sich um Anwendungsregeln.

Der Beginn und das Ende des hinzugefügten oder geänderten Textes wird im Text durch die Textmarkierungen 🕰 🙉 angezeigt.

Änderungen

Gegenüber DIN V ENV 1994-1-2:1997-06 wurden folgende Änderungen vorgenommen:

- a) der Vornorm-Charakter wurde aufgehoben:
- b) die Stellungnahmen der nationalen Normungsinstitute von CEN zu ENV 1994-1-2:1997 wurden berücksichtigt und der Inhalt wurde vollständig überarbeitet.

Gegenüber DIN EN 1994-1-2:2006-11 und DIN EN 1994-1-2 Berichtigung 1:2008-11 wurden folgende Änderungen vorgenommen:

- a) Vorgänger-Norm mit der Berichtigung 1 konsolidiert;
- b) redaktionelle Änderungen durchgeführt.

Frühere Ausgaben

DIN V ENV 1994-1-2: 1997-06 DIN EN 1994-1-2: 2006-11

DIN EN 1994-1-2 Berichtigung 1: 2008-11

EUROPÄISCHE NORM EUROPEAN STANDARD NORME EUROPÉENNE

EN 1994-1-2

August 2005

+AC

Juli 2008

ICS 13.220.50; 91.010.30; 91.080.10; 91.080.40

Ersatz für ENV 1994-1-2:1994

Deutsche Fassung

Eurocode 4:

Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton —

Teil 1-2: Allgemeine Regeln — Tragwerksbemessung für den Brandfall

Eurocode 4:

Design of composite steel and concrete structures —
Part 1-2: General rules —
Structural fire design

Eurocode 4:—
Calcul des structures mixtes acier-béton —
Partie 1-2: Règles générales —
Calcul du comportement au feu

Diese Europäische Norm wurde vom CEN am 4. November 2004 angenommen. Die Berichtigung EN 1994-1-2:2008 tritt am 30. Juli 2008 in Kraft und wurde in EN 1994-1-2:2005 eingearbeitet.

Die CEN-Mitglieder sind gehalten, die CEN/CENELEC-Geschäftsordnung zu erfüllen, in der die Bedingungen festgelegt sind, unter denen dieser Europäischen Norm ohne jede Änderung der Status einer nationalen Norm zu geben ist. Auf dem letzten Stand befindliche Listen dieser nationalen Normen mit ihren bibliographischen Angaben sind beim Management-Zentrum oder bei jedem CEN-Mitglied auf Anfrage erhältlich.

Diese Europäische Norm besteht in drei offiziellen Fassungen (Deutsch, Englisch, Französisch). Eine Fassung in einer anderen Sprache, die von einem CEN-Mitglied in eigener Verantwortung durch Übersetzung in seine Landessprache gemacht und dem Management-Zentrum mitgeteilt worden ist, hat den gleichen Status wie die offiziellen Fassungen.

CEN-Mitglieder sind die nationalen Normungsinstitute von Belgien, Bulgarien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Lettland, Litauen, Luxemburg, Malta, den Niederlanden, Norwegen, Österreich, Polen, Portugal, Rumänien, Schweden, der Schweiz, der Slowakei, Slowenien, Spanien, der Tschechischen Republik, Ungarn, dem Vereinigten Königreich und Zypern.

EUROPÄISCHES KOMITEE FÜR NORMUNG EUROPEAN COMMITTEE FOR STANDARDIZATION COMITÉ EUROPÉEN DE NORMALISATION

Maagement centre: rue de Stassart, 36 B- 1050 Brussels

Inhalt

		Seite
	ort	
	rgrund des Eurocode-Programms	
	s und Gültigkeitsbereich der Eurocodes	
	nale Fassungen der Eurocodes	
	indung zwischen den Eurocodes und den harmonisierten Technischen Spezifikationer Produkte (EN und ET AZ)	
Daupi	ndere Hinweise zu EN 1994-1-2	
	naler Anhang zu EN 1994-1-2	
Natio		
1	Allgemeines	11
1.1	Anwendungsbereich	11
1.2	Normative Verweisungen	14
1.3	Annahmen	15
1.4	Unterscheidung nach Grundsätzen und Anwendungsregeln	15
1.5	Begriffe	15
1.5.1	Besondere Begriffe bezüglich Bemessung im Allgemeinen	
1.5.2	Begriffe bezüglich Material- und Produkteigenschaften	
1.5.3	Begriffe bezüglich der thermischen Analyse	16
1.5.4	Begriffe bezüglich der mechanischen Analyse	16
1.5. 4 1.6	Formelzeichen	17
1.0		
2	Grundlagen der Bemessung	26
2.1	Anforderungen	26
2.1.1	Grundlegende Anforderungen	26
2.1.2	Nominelle Brandbeanspruchung	26
2.1.3	Parametrische Brandbeanspruchung	27
2.2	Einwirkungen	27
2.3	Bemessungswerte der Werkstoffeigenschaften	27
2.4	Nachweismethoden	28
2.4.1	Allgemeines	28
2.4.2	Bauteilberechnung	29
2.4.3		30
2.4.4		31
2.4.4		
3	Werkstoffeigenschaften	31
3.1	Allgemeines	31
3.2	Mechanische Eigenschaften	31
3.2.1	Festigkeits- und Verformungseigenschaften von Baustahl	31
3.2.2	Festigkeits- und Verformungseigenschaften von Beton	33
3.2.3	Betonstahl	36
3.3	Thermische Eigenschaften	37
3.3.1	Bau- und Betonstahl	37
3.3.2	Normalbeton	39
3.3.3	Leichtheton	42
3.3.4	Brandschutzmaterialien	43
3.4	Rohdichte	43
4	Bemessungsverfahren	44
4.1	Einleitung	44
4.2	Bemessungstabellen	45
4.2.1	Anwendungsgrenzen	45
4.2.2	Verbundträger mit Kammerbeton	46
123	Verbundstützen	48

		Seite
	Vereinfachte Berechnungsverfahren	53
4.3	Vereinfachte Berechnungsverfahren Allgemeine Regeln für Verbunddecken und Verbundträger	53
4.3.1	Allgemeine Regeln für Verbunddecken und verbundtrager	53
4.3.2	Ungeschützte Verbunddecken	54
4.3.3		
4.3.4	VerbundträgerVerbundstützen	64
4.3.5	Verbundstützen	67
4.4	Allgemeine Berechnungsverfahren	67
4.4.1	Allgemeine BerechnungsverfahrenGrundlagen der Berechnung	67
4.4.2		
4.4.3	Thermische Analyse Mechanische Analyse Gültigkeitsprüfung der allgemeinen Berechnungsverfahren	68
4.4.4	Gültigkeitsprüfung der allgemeinen Berechnungsverranten	
	Konstruktionsdetails	68
5		
5.1		
5.2		
5.3		
5.3.1	and the state of t	
5.3.2		
5.4		71
5.4.1	V i	
5.4.2		72
- 40		
5.4.3	Anschlüsse von Verbundträgern an Verbundstützen aus betongefüllten Hohlprofilen	73
5.4.4	Anschlusse von Verbundragen an Vorbandsta-	
Anhar	ng A (informativ) Spannungs-Dehnungsbeziehungen von Baustahl bei erhöhten	75
	Temperaturen	
	Debrugger von guarzitischem Beton bei erhöhte	n
Annai	Ma B (Miothians) Shannanda-Dennandaportenandan	78
	Temperaturen	,
Anha	Temperaturenng C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren g D (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten	n81
Anha	Temperaturenng C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahre ng D (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der	n81
Anha Anha	Temperaturenng C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren g D (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der Unterseite	n81 84
Anhai Anhai D.1	Temperaturen	n81 84 84 85
Anha Anha D.1 D.2	Temperaturen	n81 84 84 85
Anhar Anhar D.1 D.2 D.3	Temperaturen	n81 84 84 85 85
Anhar Anhar D.1 D.2 D.3 D.4	Temperaturen	n81 84 84 85 85
Anhar Anhar D.1 D.2 D.3 D.4 D.5	Temperaturen	n81 84 84 85 85
Anhar Anhar D.1 D.2 D.3 D.4 D.5	Temperaturen	n81 84 85 85 91
Anhar Anhar D.1 D.2 D.3 D.4 D.5	Temperaturen	n8184858591
Anhar D.1 D.2 D.3 D.4 D.5	Temperaturen	n8184858591
Anhar Anhar D.1 D.2 D.3 D.4 D.5	Temperaturen	n818485859192
Anhar D.1 D.2 D.3 D.4 D.5	Temperaturen	n818485889192
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anha	Temperaturen	n818485859192
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anha	Temperaturen	n818485859192
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anhar E.1 E.2	Temperaturen	n818485859192
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anhar E.1 E.2 E.3 E.4	Temperaturen ng C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren gD (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der Unterseite	n818485859192
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anhar E.1 E.2 E.3 E.4	Temperaturen	n818485919293
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anhar E.1 E.2 E.3 E.4 Anhar	Temperaturen Ing C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren gp (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der Unterseite	n818485859192
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anhar E.1 E.2 E.3 E.4	Temperaturen Ing C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren ing D (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der Unterseite	n818485919293
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anhar E.1 E.2 E.3 E.4 Anhar	Temperaturen Ing C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren g D (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der Unterseite	n8184858591929393
Anhar Anhar D.1 D.2 D.3 D.4 D.5 Anhar E.1 E.2 E.3 E.4 Anhar F.1	Temperaturen Ing C (informativ) Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren gp (informativ) Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der Unterseite	n8184858591929393

		Seite
Anha	ang G (informativ) Berechnungsverfahren für den Feuerwiderstand kammerbetonierter	
	Verbundstützen bei Biegeknicken um die schwache Achse und allseitiger	
	Brandbeanspruchung nach Einheits-Temperaturzeitkurve	105
G.1	Einleitung	
G.2	Flansche des Stahlquerschnittes	106
G.3	Steg des Stahlquerschnittes	
G.4	Kammerbeton	
G.5	Bewehrungsstäbe	
G.6	Berechnung der Grenznormalkraft unter zentrischem Druck bei erhöhten Temperaturen.	
G.7	Exzentrizität der Belastung	
G.8	Anwendungsbereich	
	•	
Anna	ing H (informativ) Vereinfachtes Berechnungsverfahren für betongefüllte Hohlprofile mit	445
	allseitiger Brandbeanspruchung nach Einheits-Temperaturzeitkurve	
H.1	Einleitung	
H.2	Temperaturfeld	115
H.3	Bemessungswert der Grenznormalkraft unter zentrischem Druck bei erhöhten	
	Temperaturen	
H.4	Exzentrizität der Belastung	116
H.5	Anwendungsbereich	117
Anha	ng I (informativ) Planung und Auswertung experimenteller Verfahren	121
1.1	Einleitung	
1.2	Versuche für globale Beurteilungen	
1.3	Versuche für Teilinformationen	

Vorwort

Diese Europäische Norm (EN 1994-1-2:2005 + AC:2008) wurde vom Technischen Komitee CEN/TC 250 "Eurocodes für den konstruktiven Ingenieurbau" erarbeitet, dessen Sekretariat vom BSI gehalten wird.

CEN/TC 250 ist für alle Eurocodes des konstruktiven Ingenieurbaus zuständig.

Diese Europäische Norm muss den Status einer nationalen Norm erhalten, entweder durch Veröffentlichung eines identischen Textes oder durch Anerkennung bis Februar 2006, und etwaige entgegenstehende nationale Normen müssen bis März 2010 zurückgezogen werden.

Diese Europäische Norm ersetzt ENV 1994-1-2:1994.

Entsprechend der CEN/CENELEC-Geschäftsordnung sind die nationalen Normungsinstitute der folgenden Länder gehalten, diese Europäische Norm zu übernehmen: Belgien, Dänemark, Deutschland, Estland, Finnland, Frankreich, Griechenland, Irland, Island, Italien, Lettland, Litauen, Luxemburg, Malta, Niederlande, Norwegen, Österreich, Polen, Portugal, Schweden, Schweiz, Slowakei, Slowenien, Spanien, Tschechische Republik, Ungarn, Vereinigtes Königreich und Zypern.

Hintergrund des Eurocode-Programms

Im Jahre 1975 beschloss die Kommission der Europäischen Gemeinschaften, für das Bauwesen ein Aktionsprogramm auf der Grundlage des Artikels 95 der Römischen Verträge durchzuführen. Das Ziel des Programms war die Beseitigung technischer Handelshemmnisse und die Harmonisierung technischer Spezifikationen.

Im Rahmen dieses Aktionsprogramms leitete die Kommission die Bearbeitung von harmonisierten technischen Regelwerken für die Tragwerksplanung von Bauwerken ein, die im ersten Schritt als Alternative zu den in den Mitgliedsländern geltenden Regeln dienen und schließlich diese ersetzen sollten.

15 Jahre lang leitete die Kommission mit Hilfe eines Lenkungsausschusses mit Vertretern der Mitgliedsländer die Entwicklung des Eurocode-Programms, das zu der ersten Eurocode-Generation in den 80er Jahren des zwanzigsten Jahrhunderts führte.

Im Jahre 1989 entschieden sich die Kommission und die Mitgliedsländer der Europäischen Union und der EFTA, die Entwicklung und Veröffentlichung der Eurocodes über eine Reihe von Mandaten an CEN zu übertragen, damit diese den Status von Europäischen Normen (EN) erhielten. Grundlage war eine Vereinbarung¹⁾ zwischen der Kommission und CEN. Dieser Schritt verknüpft die Eurocodes de facto mit den Regelungen der Ratsrichtlinien und Kommissionsentscheidungen, die Europäischen Normen behandeln (z. B. die Ratsrichtlinie 89/106/EWG zu Bauprodukten, die Bauproduktenrichtlinie, die Ratsrichtlinien 93/37/EWG, 92/50/EWG und 89/440/EWG zur Vergabe öffentlicher Aufträge und Dienstleistungen und die entsprechenden EFTA-Richtlinien, die zur Einrichtung des Binnenmarktes eingeleitet wurden).

Das Eurocode-Programm umfasst die folgenden Normen, die in der Regel aus mehreren Teilen bestehen:

EN 1990, Eurocode: Grundlagen der Tragwerksplanung.

EN 1991, Eurocode 1: Einwirkungen auf Tragwerke.

EN 1992, Eurocode 2: Bemessung und Konstruktion von Stahlbeton- und Spannbetontragwerken.

EN 1993, Eurocode 3: Bemessung und Konstruktion von Stahlbauten.

¹⁾Vereinbarung zwischen der Kommission der Europäischen Gemeinschaften und dem Europäischen Komitee für Normung (CEN) zur Bearbeitung der Eurocodes für die Tragwerksplanung von Hochbauten und Ingenieurbauwerken (BC/CEN/03/89).

EN 1994, Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton.

EN 1995, Eurocode 5: Bemessung und Konstruktion von Holzbauten.

EN 1996, Eurocode 6: Bemessung und Konstruktion von Mauerwerksbauten.

EN 1997, Eurocode 7: Entwurf, Berechnung und Bemessung in der Geotechnik.

EN 1998, Eurocode 8: Auslegung von Bauwerken gegen Erdbeben.

EN 1999, Eurocode 9: Bemessung und Konstruktion von Aluminiumtragwerken.

Die Eurocode-Normen berücksichtigen die Verantwortlichkeit der Bauaufsichtsorgane in den Mitgliedsländern und haben deren Recht zur nationalen Festlegung sicherheitsbezogener Werte berücksichtigt, so dass diese Werte von Land zu Land unterschiedlich bleiben können.

Status und Gültigkeitsbereich der Eurocodes

Die Mitgliedsländer der EU und von EFTA betrachten die Eurocodes als Bezugsdokumente für folgende Zwecke:

- als Mittel zum Nachweis der Übereinstimmung von Hoch- und Ingenieurbauten mit den wesentlichen Anforderungen der Richtlinie des Rates 89/106/EWG, besonders mit der wesentlichen Anforderung Nr. 1: Mechanische Festigkeit und Standsicherheit und der wesentlichen Anforderung Nr. 2: Brandschutz;
- als Grundlage f
 ür die Spezifizierung von Vertr
 ägen f
 ür die Ausf
 ührung von Bauwerken und die dazu
 erforderlichen Ingenieurleistungen;
- als Rahmenbedingung für die Erstellung harmonisierter, technischer Spezifikationen für Bauprodukte (ENs und ETAs).

Die Eurocodes haben, da sie sich auf Bauwerke beziehen, eine direkte Verbindung zu den Grundlagendokumenten²⁾, auf die in Artikel 12 der Bauproduktenrichtlinie hingewiesen wird, wenn sie auch anderer Art sind als die harmonisierten Produktnormen³⁾. Daher sind die technischen Gesichtspunkte, die sich aus den Eurocodes ergeben, von den Technischen Komitees von CEN und den Arbeitsgruppen von EOTA, die an Produktnormen arbeiten, zu beachten, damit diese Produktnormen mit den Eurocodes vollständig kompatibel sind.

Die Eurocodes liefern Regelungen für den Entwurf, die Berechnung und die Bemessung von kompletten Tragwerken und Bauteilen für die allgemeine praktische Anwendung. Sie gehen auf traditionelle Bauweisen und Aspekte innovativer Anwendungen ein, liefern aber keine vollständigen Regelungen für außergewöhnliche Baulösungen und Entwurfsbedingungen. Für diese Fälle können zusätzliche Spezialkenntnisse für den Bauplaner erforderlich sein.

²⁾ Entsprechend Artikel 3.3 der Bauproduktenrichtlinie sind die wesentlichen Anforderungen in Grundlagendokumenten zu konkretisieren, um damit die notwendigen Verbindungen zwischen den wesentlichen Anforderungen und den Mandaten für die Erstellung harmonisierter Europäischer Normen und Richtlinien für die europäische Zulassung selbst zu schaffen.

³⁾ Nach Artikel 12 der Bauproduktenrichtlinie hat das Grundlagendokument

a) die wesentlichen Anforderungen zu konkretisieren, indem die Begriffe und, soweit erforderlich, die technische Grundlage für Klassen und Anforderungsstufen vereinheitlicht werden,

b) Methoden zur Verbindung dieser Klassen oder Anforderungsstufen mit technischen Spezifikationen anzugeben, z. B. Berechnungs- oder Nachweisverfahren, technische Entwurfsregeln usw.,

c) als Bezugsdokument für die Erstellung harmonisierter Normen oder Richtlinien für Europäische Technische Zulassungen zu dienen.

Die Eurocodes spielen de facto eine ähnliche Rolle für die wesentliche Anforderung Nr. 1 und einen Teil der wesentlichen Anforderung Nr. 2.

Nationale Fassungen der Eurocodes

Die Nationale Fassung eines Eurocodes enthält den vollständigen Text des Eurocodes (einschließlich aller Anhänge), so wie von CEN veröffentlicht, möglicherweise mit einer nationalen Titelseite und einem Nationalen Vorwort sowie einem Nationalen Anhang.

Der Nationale Anhang darf nur Hinweise zu den Parametern geben, die im Eurocode für nationale Entscheidungen offen gelassen wurden. Diese national festzulegenden Parameter (NDP) gelten für die Tragwerksplanung von Hochbauten und Ingenieurbauten in dem Land, in dem sie erstellt werden. Sie umfassen:

- Zahlenwerte und/oder Klassen, wo die Eurocodes Alternativen eröffnen,
- Zahlenwerte, wo die Eurocodes nur Symbole angeben,
- landesspezifische, geographische und klimatische Daten, die nur für ein Mitgliedsland gelten, z. B.
 Schneekarten.
- Vorgehensweisen, wenn die Eurocodes mehrere Verfahren zur Wahl anbieten,
- Vorschriften zur Verwendung der informativen Anhänge,
- Verweise zur Anwendung des Eurocodes, soweit sie diese ergänzen und nicht widersprechen.

Verbindung zwischen den Eurocodes und den harmonisierten Technischen Spezifikationen für Bauprodukte (EN und ET AZ)

Es besteht die Notwendigkeit, dass die harmonisierten Technischen Spezifikationen für Bauprodukte und die technischen Regelungen für die Tragwerksplanung konsistent sind. Insbesondere sollten die Hinweise, die mit der CE-Kennzeichnung von Bauprodukten verbunden sind, die die Eurocodes in Bezug nehmen, klar erkennen lassen, welche national festzulegenden Parameter (NDP) zugrunde liegen.

Besondere Hinweise zu EN 1994-1-2

EN 1994-1-2 behandelt die Bemessungsgrundlagen, Anforderungen und Regeln für die Tragwerksbemessung von Gebäuden im Brandfall unter Berücksichtigung der folgenden Punkte:

Sicherheitsanforderungen

EN 1994-1-2 ist für Bauherrn (z.B. für die Aufstellung ihrer speziellen Anforderungen), Planer, Bauunternehmer und relevante Behörden bestimmt.

Die allgemeine Zielsetzung des Brandschutzes ist die Begrenzung der Risiken für Einzelpersonen und die Gesellschaft, benachbarte Bauwerke und, falls erforderlich, die Umgebung oder direkt betroffene Bauwerke im Brandfall.

Die Bauproduktenrichtlinie 89/106/EWG nennt die folgende wesentliche Anforderung für den Brandschutz:

"Das Bauwerk muss derartig entworfen und ausgeführt sein, dass bei einem Brand

- die Tragfähigkeit der Konstruktion während eines bestimmten Zeitraums erhalten bleibt,
- die Entstehung und Ausbreitung von Feuer und Rauch innerhalb des Bauwerks begrenzt bleiben,
- die Ausbreitung von Feuer auf benachbarte Bauwerke begrenzt bleibt,
- die Bewohner das Gebäude unverletzt verlassen oder durch andere Maßnahmen gerettet werden können,
- die Sicherheit der Rettungsmannschaften berücksichtigt ist."

⁴⁾ Siehe Artikel 3.3 und Art. 12 der Bauproduktenrichtlinie ebenso wie die Abschnitte 4.2, 4.3.1, 4.3.2 und 5.2 des Grundlagendokumentes Nr. 1.

Gemäß dem Grundlagendokument Nr. 2 "Brandschutz" darf die wesentliche Anforderung durch Befolgen verschiedener in den Mitgliedsstaaten geltenden Brandschutzstrategien, wie konventionelle Brandszenarien (nominelle Brände) oder "natürliche" Brandszenarien (parametrische Brände), einschließlich vorbeugender und abwehrender Brandschutzmaßnahmen erfüllt werden.

Die den Brandschutz betreffenden Teile des Eurocodes für den konstruktiven Ingenieurbau behandeln bestimmte Aspekte des vorbeugenden Brandschutzes, indem Regeln für die Bemessung und Konstruktion von Bauwerken und Bauteilen hinsichtlich einer ausreichenden Tragfähigkeit und, falls erforderlich, der Begrenzung der Brandausbreitung festgelegt werden.

Die funktionellen Anforderungen und die Leistungsniveaus können entweder als Feuerwiderstandsdauer z. B. bei der Einheits-Temperaturzeitkurve, die im Allgemeinen in nationalen Brandschutzregularien angegeben wird, festgelegt werden, oder, wenn dies nach den nationalen Brandschutzregularien zulässig ist, als Aufgabe des Brandschutzingenieurs unter Berücksichtigung vorbeugender und abwehrender Brandschutzmaßnahmen erreicht werden.

Zusätzliche Anforderungen, die zum Beispiel

- den möglichen Einbau und die Instandhaltung von Sprinkleranlagen,
- die Bedingungen für die Bewohnbarkeit von Gebäude- oder Brandabschnitten,
- die Verwendung von zugelassenen Dämm- und Beschichtungsstoffen einschließlich ihrer Instandhaltung

betreffen, sind nicht Gegenstand dieses Dokuments, da sie von der zuständigen Behörde festgelegt werden.

Zahlenwerte für Teilfaktoren und andere Elemente zuverlässigkeitsabhängiger Größen werden als empfohlene Werte angegeben, die ein annehmbares Niveau der Zuverlässigkeit ergeben. Sie wurden unter der Annahme ausgewählt, dass eine qualifizierte Ausführung vorliegt zusammen mit einem annehmbaren Qualitätsmanagement.

Bemessungsverfahren

Ein vollständig analytisches Verfahren der konstruktiven Bemessung im Brandfall würde das Tragverhalten bei erhöhten Temperaturen, die mögliche Beanspruchung durch Wärme und die positiven Auswirkungen von vorbeugenden und abwehrenden Brandschutzmaßnahmen sowie die mit diesen drei Faktoren verbundenen Ungewissheiten und die Bedeutung des Bauwerks (Konsequenzen bei Versagen) berücksichtigen.

Gegenwärtig ist es möglich, ein Verfahren zur Bestimmung einer adäquaten Leistungsfähigkeit durchzuführen, das, wenn auch nicht alle, so doch einige dieser Parameter beinhaltet, und nachzuweisen, dass das Bauwerk oder seine Bauteile bei einem tatsächlichen Brand eine adäquate Leistungsfähigkeit aufweisen werden. Wenn das Verfahren jedoch auf einer nominellen Brandkurve beruht, berücksichtigt das Klassifizierungssystem, das auf spezifischen Feuerwiderstandsdauern beruht, die oben angegebenen Merkmale und Ungewissheiten (wenn auch nicht explizit).

Die Anwendung dieses Teils 1-2 ist im Folgenden dargestellt. Die Ansätze werden durch festgelegte Vorgaben und durch leistungsabhängige Festlegungen bestimmt. Der Ansatz durch festgelegte Vorgaben beruht auf nominellen Bränden, aus denen sich die thermischen Einwirkungen ergeben. Der auf leistungsabhängigen Festlegungen beruhende Ansatz, bei dem der Brandschutzingenieur die Brandschutzbemessung durchführt, bezieht sich auf thermische Einwirkungen, die auf physikalischen und chemischen Parametern beruhen.

Um Bemessungen nach diesem Teil durchzuführen, wird EN 1991-1-2 für die Bestimmung der thermischen und mechanischen Einwirkungen benötigt.

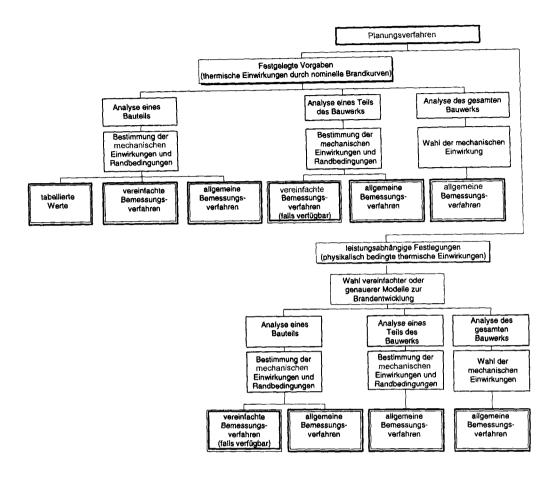


Bild 0.1 — Alternative Bemessungsverfahren

Bemessungshilfe

Neben den vereinfachten Berechnungsverfahren enthält EN 1994-1-2 Bemessungsmöglichkeiten in Form von tabellierten Werten (auf der Grundlage von Versuchen oder allgemeinen Bemessungsverfahren), die in einem bestimmten Geltungsbereich verwendet werden dürfen.

Es wird erwartet, dass auf den Berechnungsmodellen nach EN 1994-1-2 beruhende Planungshilfen von den interessierten externen Organisationen erarbeitet werden.

Der Haupttext der EN 1994-1-2 beinhaltet zusammen mit den informativen Anhängen A bis I die meisten der prinzipiellen Konzepte und Regeln, die für die Brandschutz-Bemessung von Verbundtragwerken aus Stahl und Beton erforderlich sind.

Nationaler Anhang zu EN 1994-1-2

Diese Norm enthält alternative Verfahren und Werte sowie Empfehlungen für Klassen mit Hinweisen, an welchen Stellen nationale Festlegungen getroffen werden. Dazu sollte die jeweilige nationale Ausgabe von EN 1994-1-2 einen Nationalen Anhang mit den festzulegenden Parametern enthalten, mit dem die Tragwerksplanung von Hochbauten, die in dem Ausgabeland gebaut werden sollen, möglich ist.

Nationale Festlegungen sind nach EN 1994-1-2 in den folgenden Abschnitten vorgesehen:

1.1 (16)

2.1.3 (2)

AC) 2.3 (1)P Anmerkung 1 (AC)

AC 2.3 (2)P Anmerkung 1 (AC

AC) 2.4.2 (3) Anmerkung 1 (AC)

AC 3.3.2 (9) Anmerkung 1 (AC

4.1 (1)P

AC 4.3.5.1 (10) Anmerkung 1 (AC)

1 Allgemeines

1.1 Anwendungsbereich

- (1) Dieser Teil 1-2 der EN 1994 behandelt den Entwurf, die Berechnung und die Bemessung von Verbundtragwerken aus Stahl und Beton für den Brandfall als außergewöhnliche Situation und ist in Verbindung mit EN 1994-1-1 und EN 1991-1-2 anzuwenden. Dieser Teil 1-2 weist lediglich die Abweichungen oder Ergänzungen zu Entwurf, Berechnung und Bemessung bei normalen Temperaturen auf.
- (2) Dieser Teil 1-2 der EN 1994 behandelt ausschließlich passive Maßnahmen des Brandschutzes. Aktive Maßnahmen werden nicht abgedeckt.
- (3) Dieser Teil 1-2 der EN 1994 gilt für Verbundtragwerke, die aus Gründen des allgemeinen Brandschutzes bestimmte Funktionen im Brandfall erfüllen müssen, indem
- vorzeitiger Einsturz des Tragwerkes (Tragfähigkeit),
- die Ausbreitung des Brandes (Flammen, Brandgase, übermäßige Hitze) über bestimmte Abschnitte hinaus (Raumabschluss)

vermieden werden.

- (4) Dieser Teil 1-2 der EN 1994 enthält verbindliche Regeln (i)P und Anwendungsregeln (j) (siehe EN 1991-1-2) für Entwurf, Berechnung und Bemessung von Tragwerken für gegebene Anforderungen unter Berücksichtigung der vorgenannten Funktionen und Sicherheitsniveaus.
- (5) Dieser Teil 1-2 der EN 1994 gilt für Tragwerke oder Tragwerksteile, die in den Geltungsbereich von ENV 1994-1-1 fallen und demgemäß entworfen, berechnet und bemessen sind. Dennoch enthält dieser Teil keine Regeln für Verbundbauteile mit vorgespannten Betonelementen.
- (6) Bei allen Verbundquerschnitten ist in der Regel die Verdübelung des Längsschubes zwischen Stahl und Beton nach den Regeln von EN 1994-1-1 oder durch Versuche (siehe auch 4.3.4.1.5 und Anhang I) sicherzustellen.
- (7) Typische Beispiele von Verbunddecken mit Profilblechen mit oder ohne Bewehrungsstäbe zeigt Bild 1.1.

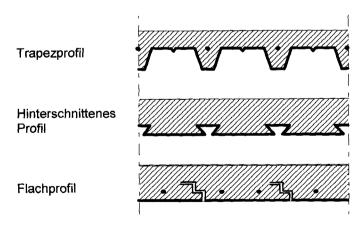
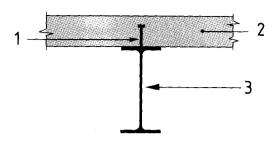
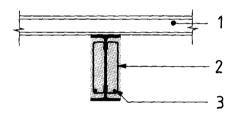
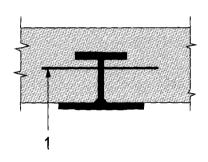



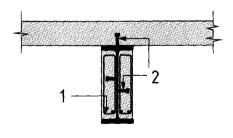
Bild 1.1 — Typische Beispiele von Verbunddecken mit Profilblechen mit oder ohne Bewehrungsstäbe


(8) Typische Beispiele von Verbundträgern zeigen die Bilder 1.2 bis 1.5. Die entsprechenden konstruktiven Details werden in Abschnitt 5 behandelt.

Legende

- 1 Verbundmittel
- 2 Betondecke oder Verbunddecke mit Profilblech
- 3 Profil mit/ohne Brandschutzbekleidung


Bild 1.2 — Verbundträger mit Stahlträgern ohne Kammerbeton



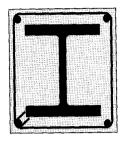
Legende

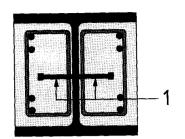
- 1 gegebenenfalls Decke
- 2 an den Profilsteg geschweißte Bügel
- 3 Bewehrungsstab

Bild 1.3 — Stahlträger mit Kammerbeton

Legende

1 - Bewehrungsstab


Legende


- 1 Bewehrungsstab
- 2 Verbundmittel

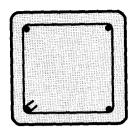

Bild 1.4 — Teilweise einbetonierter Stahlträger

Bild 1.5 — Verbundträger mit Kammerbeton

(9) Typische Beispiele für Verbundstützen zeigen die Bilder 1.6 bis 1.8. Die entsprechenden konstruktiven Details werden in Abschnitt 5 behandelt.

Legende

 1 – An den Profilsteg geschweißte Verbundmittel

Bild 1.6 — Vollständig einbetonierte Profile

Bild 1.7 — Profile mit Kammerbeton

Bild 1.8 — Betongefüllte Profile

- (10) Für Stützen dürfen auch andere Formen wie runde oder achteckige Querschnitte angewendet werden. Falls angemessen, dürfen Bewehrungsstäbe durch andere Stahlquerschnitte ersetzt werden.
- (11) Der Feuerwiderstand dieser Bauteile darf durch zusätzliche Brandschutzmaterialien erhöht werden.

ANMERKUNG Falls es nicht ausdrücklich abweichend angegeben ist, beziehen sich die in 4.2, 4.3 und 5 beschriebenen verbindlichen Regeln und Anwendungsregeln auf direkt beflammte, ungeschützte Stahloberflächen.

- (12)P Die Methoden, die in diesem Teil 1-2 der EN 1994 angegeben werden, sind auf die Baustähle S235, S275, S355, S420 und S460 der EN 10025, EN 10210-1 und EN 10219-1 anwendbar.
- (13) Für Stahlprofilbleche gilt EN 1994-1-1, 3.5.
- (14) Betonstahl muss mit EN 10080 übereinstimmen.
- (15) Normalbeton nach EN 1994-1-1 ist für die brandschutztechnische Bemessung von Verbundkonstruktionen anwendbar. Leichtbeton ist für Verbunddecken nicht zugelassen.
- (16) Mit diesem Teil der EN 1994 wird die Bemessung von Verbundtragwerken mit Betonfestigkeitsklassen unter C20/25 und LC20/22 und über C50/60 und LC50/55 nicht abgedeckt.

ANMERKUNG EN 1992-1-2, Abschnitt 6 beinhaltet Informationen zu Betonfestigkeitsklassen über C50/60. Der Nationale Anhang enthält ggf. genauere Angaben über die Anwendung dieser Betonfestigkeitsklassen.

(17) Für Baustoffe, die in dieser Norm nicht enthalten sind, ist in der Regel auf entsprechende CEN-Produktnormen oder europäisch technische Zulassungen (ETA) zu verweisen.

1.2 Normative Verweisungen

(1)P Diese Europäische Norm enthält durch datierte oder undatierte Verweisungen Festlegungen aus anderen Publikationen. Diese normativen Verweisungen sind an den jeweiligen Stellen im Text zitiert, und die Publikationen sind nachstehend aufgeführt. Bei datierten Verweisungen gehören spätere Änderungen oder Überarbeitungen dieser Publikationen nur zu dieser Europäischen Norm, falls sie durch Änderung oder Überarbeitung eingearbeitet sind. Bei undatierten Verweisungen gilt die letzte Ausgabe der in Bezug genommenen Publikation (einschließlich Änderungen).

EN 1365-1, Feuerwiderstandsprüfungen für tragende Bauteile — Teil 1: Wände

EN 1365-2, Feuerwiderstandsprüfungen für tragende Bauteile — Teil 2: Decken und Dächer

EN 1365-3, Feuerwiderstandsprüfungen für tragende Bauteile — Teil 3: Balken

EN 1365-4, Feuerwiderstandsprüfungen für tragende Bauteile — Teil 4: Stützen

EN 10025-1, Warmgewalzte Erzeugnisse aus Baustählen — Teil 1: Allgemeine technische Lieferbedingungen

EN 10025-2, Warmgewalzte Erzeugnisse aus Baustählen — Teil 2: Technische Lieferbedingungen für unlegierte Baustähle

EN 10025-3, Warmgewalzte Erzeugnisse aus Baustählen — Teil 3: Technische Lieferbedingungen für normalgeglühte/normalisierend gewalzte schweißgeeignete Feinkornbaustähle

EN 10025-4, Warmgewalzte Erzeugnisse aus Baustählen — Teil 4: Technische Lieferbedingungen für thermomechanisch gewalzte schweißgeeignete Feinkornbaustähle

EN 10025-5, Warmgewalzte Erzeugnisse aus Baustählen — Teil 5: Technische Lieferbedingungen für wetterfeste Baustähle

EN 10025-6, Warmgewalzte Erzeugnisse aus Baustählen — Teil 6: Technische Lieferbedingungen für Flacherzeugnisse aus Stählen mit höherer Streckgrenze im vergüteten Zustand

EN 10080, Stahl für die Bewehrung von Beton — Schweißgeeigneter Betonstahl — Allgemeines

EN 10210-1, Warmgefertigte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen — Teil 1: Technische Lieferbedingungen

EN 10219-1, Kaltgefertigte geschweißte Hohlprofile für den Stahlbau aus unlegierten Baustählen und aus Feinkornbaustählen — Teil 1: Technische Lieferbedingungen

CEN/TS 13381-1, Prüfverfahren zur Bestimmung des Beitrages zum Feuerwiderstand von tragenden Bauteilen — Teil 1: Horizontal angeordnete Brandschutzbekleidung

ENV 13381-2, Prüfverfahren zur Bestimmung des Beitrages zum Feuerwiderstand von tragenden Bauteilen — Teil 2: Vertikal angeordnete Brandschutzbekleidungen

ENV 13381-3, Prüfverfahren zur Bestimmung des Beitrages zum Feuerwiderstand von tragenden Bauteilen — Teil 3: Brandschutzmaßnahmen für Betonbauteile

ENV 13381-4, Prüfverfahren zur Bestimmung des Beitrages zum Feuerwiderstand von tragenden Bauteilen — Teil 4: Brandschutzmaßnahmen für Stahlbauteile

ENV 13381-5, Prüfverfahren zur Bestimmung des Beitrages zum Feuerwiderstand von tragenden Bauteilen — Teil 5: Brandschutzmaßnahmen für profilierte Stahlblech/Beton Verbundkonstruktionen

ENV 13381-6, Prüfverfahren zur Bestimmung des Beitrages zum Feuerwiderstand von tragenden Bauteilen — Teil 6: Brandschutzmaßnahmen für betonverfüllte Stahlverbund-Hohlstützen

EN 1990, Eurocode: Grundlagen der Tragwerksplanung

EN 1991-1-1, Eurocode 1: Einwirkungen auf Tragwerke — Teil 1-1: Allgemeine Einwirkungen auf Tragwerke; Wichten, Eigengewicht und Nutzlasten im Hochbau

EN 1991-1-2, Eurocode 1: Einwirkungen auf Tragwerke — Teil 1-2: Allgemeine Einwirkungen — Brandeinwirkungen auf Tragwerke

EN 1991-1-3, Eurocode 1: Einwirkungen auf Tragwerke — Teil 1-3: Allgemeine Einwirkungen — Schneelasten

EN 1991-1-4, Eurocode 1: Einwirkungen auf Tragwerke — Teil 1-4: Allgemeine Einwirkungen — Windlasten

EN 1992-1-1, Eurocode 2: Planung von Stahlbeton- und Spannbetontragwerken — Teil 1-1: Grundlagen und Anwendungsregeln für den Hochbau

EN 1992-1-2, Eurocode 2: Bernessung und Konstruktion von Stahlbeton- und Spannbetontragwerken — Teil 1-2: Allgemeine Regeln — Tragwerksbernessung für den Brandfall

EN 1993-1-1, Eurocode 3: Bemessung und Konstruktion von Stahlbauten — Teil 1-1: Allgemeine Bemessungsregeln und Regeln für den Hochbau

EN 1993-1-2, Eurocode 3: Bemessung und Konstruktion von Stahlbauten — Teil 1-2: Allgemeine Regeln — Tragwerksbemessung für den Brandfall

EN 1993-1-5, Eurocode 3: Bernessung und Konstruktion von Stahlbauten — Teil 1-5; Plattenbeulen

EN 1994-1-1, Eurocode 4: Bemessung und Konstruktion von Verbundtragwerken aus Stahl und Beton — Teil 1-1: Allgemeines, Allgemeine Regeln für Hochbauten

1.3 Annahmen

(1)P Es gelten die Regelungen nach EN 1990 und EN 1991-1-2.

1.4 Unterscheidung nach Grundsätzen und Anwendungsregeln

(1) Es gelten die Regelungen nach EN 1990, 1.4.

1.5 Begriffe

- (1)P Es gelten die Regelungen nach EN 1990, 1.5 und EN 1991-1-2, 1.5.
- (2)P Die folgenden Begriffe und Definitionen werden in dieser Europäischen Norm mit folgender Bedeutung verwendet:

1.5.1 Besondere Begriffe bezüglich Bemessung im Allgemeinen

1.5.1.1

Achsabstand (axis distance)

Abstand der Bewehrung zur nächsten Betonoberfläche

1.5.1.2

Teiltragwerk (part of structure)

Teil eines Gesamttragwerks mit entsprechenden Lagerungs- und Randbedingungen

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

1.5.1.3

geschützte Bauteile (protected members)

Bauteile mit Maßnahmen zur Verzögerung des Temperaturanstiegs infolge Brandeinwirkung

1.5.1.4

ausgesteiftes Tragwerk (braced frame)

seitlich unverschiebliches Tragwerk mit einem Aussteifungssystem mit einer derartigen Steifigkeit, dass alle horizontalen Lasten durch dieses Aussteifungssystem aufgenommen werden

1.5.2 Begriffe bezüglich Material- und Produkteigenschaften

1.5.2.1

Versagenszeit einer Brandschutzbekleidung (failure time of protection)

Widerstandsdauer einer Brandschutzbekleidung gegen direkte Brandeinwirkung. Dies ist die Zeit, bei der sich entweder Brandschutzplatten oder andere Brandschutzbekleidungen von dem Verbundbauteil lösen oder andere an das Verbundbauteil anschließende Bauteile versagen oder die Verbindung zu den anderen Bauteilen infolge übergroßer Verformungen des Verbundbauteils verloren geht.

1.5.2.2

Brandschutzmaterial (fire protection material)

Baustoffe oder Baustoffkombinationen, die an einem tragenden Bauteil zur Verbesserung seiner Feuerwiderstandsfähigkeit angebracht werden

1.5.3 Begriffe bezüglich der thermischen Analyse

1.5.3.1

Profilfaktor (section factor)

für unbekleidete Stahlbauteile das Verhältnis der brandbeanspruchten Oberfläche zum Stahlvolumen und für bekleidete Stahlbauteile das Verhältnis der inneren Oberfläche der brandbeanspruchten Bekleidung zum Stahlvolumen

1.5.4 Begriffe bezüglich der mechanischen Analyse

1.5.4.1

kritische Temperatur von Baustahl (critical temperature of structural steel)

Stahltemperatur, bei der Versagen in einem Stahlbauteil mit gleichförmiger Temperaturverteilung bei einem bestimmten Beanspruchungsniveau erwartet wird

1.5.4.2

kritische Temperatur der Bewehrung (critical temperature of reinforcement)

Temperatur in der Bewehrung, bei der ein Versagen des Bauteils bei einem bestimmten Beanspruchungsniveau erwartet wird

1.5.4.3

wirksamer Querschnitt (effective cross section)

Querschnitt des brandschutztechnisch zu bemessenen Bauteils, der bei der Methode der wirksamen Querschnitte verwendet wird. Der wirksame Querschnitt ergibt sich aus der Vernachlässigung der Festigkeit und Steifigkeit ausgefallener Querschnittsteile.

1.5.4.4

maximales Spannungsniveau (maximum stress level)

Spannungsniveau, bei dem die Spannungs-Dehnungsbeziehung von Stahl bei einer bestimmten Temperatur durch ein Fließplateau beschränkt wird

1.6 Formelzeichen

(1)P Für die Anwendung dieser Norm EN 1994-1-2 gelten die folgenden Formelzeichen.

Große lateinische Buchstaben

 $\stackrel{\circ}{\text{der Temperatur}} \ \theta$

0,000 1001	
A	Querschnittsfläche oder Betonvolumen eines Bauteils je Meter Bauteillänge
$A_{a, heta}$	Querschnittsfläche des Stahlprofils bei einer Temperatur $ heta$
$A_{\mathtt{c}, heta}$	Betonquerschnittsfläche bei einer Temperatur $ heta$
A_{f}	Querschnittsfläche eines Stahlflansches
$A_{i,}A_{j}$	Teilfläche des Querschnitts mit einer Temperatur $ heta$ oder $ heta$ oder brandbeanspruchte Oberfläche eines Teiles i des Stahlquerschnitts je Längeneinheit
A/L_{r}	Rippengeometriefaktor
A_{i} / V_{i}	Profilfaktor [m ⁻¹] von einem Teil <i>i</i> eines Stahlquerschnitts (ungeschütztes Bauteil)
A_{m}	direkt beflammte Oberfläche eines Bauteils je Längeneinheit
A_{m}/V	Profilfaktor von Bauteilen
$A_{p,i}$	innere Oberfläche von Brandschutzbekleidung je Längeneinheit eines Teiles $\it i$ eines Stahlbauteiles
$A_{p,i}/V_{i}$	Profilfaktor [m^{-1}] des Teiles i eines Stahlquerschnitts (mit profilfolgender Bekleidung)
A_{r}	Querschnittsfläche von Steifen
$A_{\rm r}/V_{\rm r}$	Profilfaktor von Steifen
$A_{s, heta}$	Querschnittsfläche von Betonstahl bei einer Temperatur $ heta$
E	Raumabschlusskriterium
E 30	oder E 60, ein Bauteil, das das Raumabschlusskriterium für 30, oder 60 Minuten unter Norm-Brandbeanspruchung erfüllt
E_{a}	charakteristischer Wert des Elastizitätsmoduls von Baustahl bei 20 °C
$E_{a,f}$	charakteristischer Wert des Elastizitätsmoduls von einem Stahlflansch
$E_{a, \Theta}$	charakteristischer Wert der Steigung im linear-elastischen Bereich der Spannungs-Dehnungsbeziehungen von Baustahl im Brandfall; abhängig von der Temperatur $ heta$
$E_{a, heta,\sigma}$	Tangentenmodul der Spannungs-Dehnungsbeziehung des Stahlprofils im Brandfall bei einer Temperatur θ und einer Spannung $\sigma_{i,\theta}$
$E_{c,sec,\theta}$	charakteristischer Wert des Sekantenmoduls von Beton im Brandfall; gegeben durch $f_{\rm c,\theta}$ dividiert durch $\varepsilon_{\rm cu,\theta}$; abhängig von der Temperatur θ
$E_{c0, heta}$	charakteristischer Wert des Tangentenmoduls im Ursprung der Spannungs- Dehnungsbeziehungen von Beton im Brandfall und bei Kurzzeitbeanspruchung; abhängig von der Temperatur θ

$E_{c, heta,\sigma}$	Tangentenmodul der Spannungs-Dehnungsbeziehung von Beton im Brandfall bei einer Temperatur θ und einer Spannung $\sigma_{\rm i,0}$
$E_{\sf d}$	Bemessungswert der Beanspruchung bei Normaltemperatur
$E_{fi,d}$	Bemessungswert der Beanspruchung im Brandfall (unabhängig von der Branddauer)
$E_{fi,d,t}$	Bemessungswert der maßgebenden Beanspruchung im Brandfall zum Zeitpunkt t ; einschließlich indirekter Brandeinwirkungen und Beanspruchungen im Brandfall
(EI) _{fi,c,z}	Biegsteifigkeit im Brandfall (bezogen auf die z-Achse des Verbundquerschnitts)
$(EI)_{fi,eff}$	effektive Biegesteifigkeit im Brandfall
(EI) _{fi,f,z}	Biegesteifigkeit der beiden Flansche des Stahlquerschnitts im Brandfall (bezogen auf die z-Achse des Verbundquerschnitts)
(EI) _{fi,s,z}	Biegesteifigkeit der Bewehrungsstäbe im Brandfall (bezogen auf die z-Achse des Verbundquerschnitts)
(EI) _{fi,eff,z}	effektive Biegesteifigkeit (für Biegung um die z-Achse) im Brandfall
(EI) _{fi,w,z}	Biegesteifigkeit des Steges eines Stahlprofils im Brandfall (bezogen auf die z-Achse des Verbundquerschnitts)
E_{k}	charakteristischer Wert des Elastizitätsmoduls
E_{s}	Elastizitätsmodul für Betonstahl
$E_{s, heta}$	charakteristischer Wert der Steigung im linear-elastischen Bereich der Spannungs-Dehnungsbeziehungen von Betonstahl im Brandfall; abhängig von der Temperatur θ
$E_{\mathbf{s}, heta,\sigma}$	Tangentenmodul der Spannungs-Dehnungsbeziehung von Betonstahl im Brandfall bei einer Temperatur θ und einer Spannung $\sigma_{\mathbf{i},\theta}$
F_{a}	Druckkraft im Stahlprofil
F^+ , F^-	resultierende Druckkraft im Verbundquerschnitt bei positiven oder negativen Biegemomenten
$F_{\mathtt{c}}$	Druckkraft in der Decke
G_{k}	charakteristischer Wert der ständigen Einwirkungen
НС	Hydrokarbon-Brandkurve
I	thermisches Isolierkriterium
$I_{\mathbf{i}, heta}$	Flächenträgheitsmoment einer teilweise reduzierten Teilfläche i eines Querschnitts bei Biegung um die schwache oder starke Achse im Brandfall
1 30	oder I 60, ein Bauteil, das das thermische Isolierkriterium für 30 oder 60 Minuten unter Norm-Brandbeanspruchung erfüllt
L	Systemlänge einer Stütze im betrachteten Stockwerk
L_{ei}	Knicklänge einer Stütze in einem mittleren Stockwerk

Knicklänge einer Stütze in einem obersten Stockwerk

DIN EN 1994-1-2:2010-12 EN 1994-1-2:2005 + AC:2008 (D)

M Biegemoment $M_{\rm fi,Rd} + M_{\rm fi,Rd}$ -Bemessungswert der positiven oder negativen Momententragfähigkeit (Grenzmoment) im Brandfall Bemessungswert der Biegemomententragfähigkeit im Brandfall zum Zeitpunkt t $M_{\text{fi,t,Rd}}$ N Anzahl der Verbundmittel innerhalb einer kritischen Länge N Normalkraft äquivalente Normalkraft $N_{\sf equ}$ ideale Verzweigungslast einer Verbundstütze (= Euler-Knicklast) im Brandfall $N_{\mathrm{fi,cr}}$ $N_{\rm fi,cr,z}$ ideale Verzweigungslast einer Verbundstütze (= Euler-Knicklast) um die z-Achse im Brandfall Bemessungswert der vollplastischen Normalkrafttragfähigkeit des gesamten Verbundquerschnitts $N_{\mathsf{fi},\mathsf{pl},\mathsf{Rd}}$ im Brandfall $N_{\mathsf{fi},\mathsf{Rd}}$ Bemessungswert der Grenznormalkraft (unter zentrischem Druck) im Brandfall Bemessungswert der Grenznormalkraft (unter zentrischem Druck) bei Biegung um die schwache $N_{\mathsf{fi},\mathsf{Rd},\mathsf{z}}$ Achse (z-Achse) im Brandfall $N_{\mathsf{fi,Sd}}$ Bemessungswert der zentrischen Last im Brandfall N_{Rd} Knicklast bei normaler Temperatur N_s Normalkraft in der Stützbewehrung $(A_s \cdot f_{sy})$ Bemessungswert der Abschertragfähigkeit eines Kopfbolzendübels P_{Rd} Bemessungswert der Abschertragfähigkeit eines Dübels im Brandfall $P_{\mathsf{fi},\mathsf{Rd}}$ charakteristischer Wert der führenden veränderlichen Einwirkung 1 $Q_{k,1}$ R Tragfähigkeitskriterium R 30

Bemessungswert der Tragfähigkeit eines Bauteils unter normalen Temperaturen

oder R 60, R 90, R 120, R 180, R 240... ein Bauteil, das das Tragfähigkeitskriterium 30, 60, 90,

 $R_{\text{fi,d,t}}$ Bemessungswert der Tragfähigkeit eines Bauteils im Brandfall zum Zeitpunkt t

120, 180 oder 240 ... Minuten bei Norm-Brandbeanspruchung erfüllt

Bemessungswert der Quetschlast im Brandfall $R_{\mathsf{fi},\mathsf{y},\mathsf{Rd}}$

TZugkraft

 R_{d}

 L_{et}

 ν Volumen von Bauteilen je Längeneinheit

 $V_{\mathsf{fi},\mathsf{pl},\mathsf{Rd}}$ Bemessungswert der vollplastischen Querkrafttragfähigkeit im Brandfall

 $V_{\mathsf{fi},\mathsf{Sd}}$ Bemessungswert der Querkraft im Brandfall

V_{i}	Volumen eines Teiles Teines Staniquerschnitts je Langeneinheit [m/m]
X	X-Achse (horizontal)
$X_{fi,d}$	Bemessungswert der mechanischen Materialeigenschaften (für Festigkeit und Verformung)
X_{k}	charakteristischer Wert oder Nennwert einer Kraft- oder Verformungseigenschaft für die Bemessung bei Normaltemperatur
$X_{k, heta}$	Wert einer Materialeigenschaft im Brandfall, im Allgemeinen abhängig von der Material- temperatur
Y	Y-Achse (vertikal), Querschnittsachse parallel zu den Flanschen
Z	Z-Achse (Mittelachse) des Verbundquerschnitts
Kleine la	teinische Buchstaben
a_{w}	Dicke einer Schweißnaht (Verbindung zwischen Stahlflansch und Bügelbewehrung)
b	Flanschbreite eines Stahlquerschnitts, Breite eines Gurtes
<i>b</i> ₁	Breite des unteren Flansches des Stahlquerschnitts
b_2	Breite des oberen Flansches des Stahlquerschnitts
b_{c}	Breite einer Verbundstütze mit einem vollständig einbetonierten Querschnitt oder Breite des Kammerbetons eines teilweise einbetonierten Stahlträgers
$b_{c,fi}$	Breitenreduzierung des Kammerbetons zwischen den Flanschen im Brandfall
$b_{ m c,fi,min}$	Mindestwert der Breitenreduzierung des Kammerbetons zwischen den Flanschen im Brandfall
b_{eff}	gesamte mittragende Breite der Betondecke
b_{fi}	Breitenreduzierung des oberen Flansches im Brandfall
c	spezifische Wärmekapazität oder Knickspannungskurve oder Betondeckung einbetonierte Baustahlquerschnitte oder -querschnittsteile
c_{a}	spezifische Wärmekapazität von Stahl
$c_{\mathtt{c}}$	spezifische Wärmekapazität von Normalbeton
c_{p}	spezifische Wärmekapazität des Brandschutzmaterials
d	Durchmesser einer Verbundstütze aus einem betongefüllten Hohlquerschnitt oder Durchmesse eines Kopfbolzendübels, angeschweißt an den Steg eines Stahlprofils
d_{p}	Dicke der Brandschutzbekleidung
e	Blechdicke des Stahl-(Hohl-)Profils
e_1	Flanschdicke (oben) des Stahlprofils
e_2	Flanschdicke (unten) des Stahlprofils
e_{f}	Flanschdicke des Stahlprofils
20	

e_{w}	Stegdicke des Stahlprofils
ef	Außenbrandkurve (EF)
$f_{ay, 0}$	maximales Spannungsniveau oder effektive Streckgrenze von Baustahl im Brandfall; abhängig von der Temperatur θ
$f_{ay, hetacr}$	Festigkeit von Stahl bei einer kritischen Temperatur $ heta_{ m cr}$
$f_{ap, heta}$; $f_{sp, heta}$	Proportionalitätsgrenze von Bau- oder Betonstahl im Brandfall; abhängig von der Temperatur $ heta$
$f_{au, heta}$	Zugfestigkeit von Baustahl oder Bolzenmaterials mit Verfestigung im Brandfall; abhängig von der Temperatur θ
f_{ay}	charakteristischer Wert oder Nennwert der Streckgrenze von Baustahl bei 20 °C
$f_{\mathtt{c}}$	charakteristischer Wert der Zylinderdruckfestigkeit von Beton nach 28 Tagen und bei 20 °C
$f_{c,j}$	charakteristische Festigkeit von einem Betonteil j bei 20 °C
$f_{\mathbf{c}_i heta}$	charakteristischer Wert der Betondruckfestigkeit (Zylinder) im Brandfall; abhängig von der Temperatur θ in °C
$f_{c, \Theta n}$	Restdruckfähigkeit von Beton; erwärmt auf eine maximale Temperatur (mit n Schichten)
$f_{c, heta y}$	Restdruckfähigkeit von Beton; erwärmt auf eine maximale Temperatur
$f_{fi,d}$	Bemessungswert der Festigkeit im Brandfall
f_{k}	charakteristischer Wert der Materialfestigkeit
$f_{ry_{,}} f_{sy}$	charakteristischer Wert oder Nennwert der Streckgrenze eines Bewehrungsstabes bei 20 °C
$f_{sy, heta}$	maximales Spannungsniveau oder effektive Streckgrenze von Bewehrungsstahl im Brandfall; abhängig von der Temperatur θ
$f_{y,i}$	Nennwert der Streckgrenze f_y für die Teilfläche A_i ; wird auf der Druckseite der plastischen Nulllinie positiv und auf der Zugseite negativ angerechnet
h	Breite oder Höhe eines Stahlquerschnitts
h_1	Höhe der Betonschicht einer Verbunddecke oberhalb des Trapez- oder hinterschnittenen Profils
h_2	Höhe der Betonschicht einer Verbunddecke in den Sicken des Trapez- oder hinterschnittenen Profils (entspricht der Höhe des Stahlblechprofils)
h_3	Dicke des Estrichs oberhalb des Betons
$h_{\mathtt{c}}$	Querschnittshöhe der Verbundstütze mit einem vollständig einbetonierten Querschnitt oder Dicke der Betondecke
h_{eff}	effektive Dicke einer Verbunddecke
h_{fi}	Höhenreduzierung des Kammerbetons zwischen den Flanschen
$\dot{ ilde{h}}_{net}$	Netto-Wärmestrom in 1 m ² Oberfläche

$\dot{ ilde{h}}_{net,c}$	Netto-Wärmestrom durch Konvektion in 1 m ² Oberfläche
$\dot{h}_{net,r}$	Netto-Wärmestrom durch Strahlung in 1 m ² Oberfläche
h_{u}	Höhe der Druckzone
$h_{u,n}$	Höhe der Druckzone (mit n Schichten)
h_{v}	Höhe des Kopfbolzens, der an den Steg des Stahlprofils geschweißt ist
$h_{\sf w}$	Höhe des Stahlstegs des Stahlprofils
$k_{c, heta}$	Reduktionsfaktor für die Druckfestigkeit von Beton; beschreibt die Festigkeit im Brandfall $f_{c,\theta}$, in Abhängigkeit von der Temperatur
$k_{E, heta}$	Reduktionsfaktor für den Elastizitätsmodul von Baustahl; beschreibt die Steigung im linearelastischen Bereich im Brandfall $E_{\mathbf{a},\theta}$, in Abhängigkeit von der Temperatur
$k_{y, \Theta}$	Reduktionsfaktor für die Streckgrenze von Baustahl zur Bestimmung des maximalen Spannungsniveaus $f_{\rm ay, \theta}$ bei erhöhter Temperatur
$\emph{k}_{p,\theta}$	Reduktionsfaktor für die Streckgrenze von Bau- oder Bewehrungsstahl zur Bestimmung der Proprotionalitätsgrenze $f_{ap,\theta}$ oder $f_{sp,\theta}$ bei erhöhter Temperatur
$k_{\rm r}, k_{\rm s}$	Reduktionsfaktor der Streckgrenze von Bewehrungsstahl
$k_{\sf shadow}$	Korrekturfaktor für den Abschattungseffekt
$k_{u,\theta}$	Reduktionsfaktor für die Streckgrenze von Bau- oder Bewehrungsstahl zur Bestimmung des Spannungsniveaus im Verfestigungsbereich $f_{\rm au,\theta}$, bei erhöhter Temperatur
${\pmb k}_{\Theta}$	Reduktionsfaktor einer Festigkeits- oder Verformungseigenschaft; abhängig von der Temperatur θ im Brandfall
ℓ	Länge oder Knicklänge
ℓ_1 , ℓ_2 , ℓ_3	spezielle Abmessungen eines hinterschnittenen oder eines Trapez-Profils
$\ell_{\mathbf{w}}$	Schweißnahtlänge (Anschluss von Bügeln im Kammerbeton an den Stahlsteg)
ℓ_{Θ}	Knicklänge einer Stütze im Brandfall
Ss	Länge der Einspannung (Berechnung der Materialtragfähigkeit von Steifen)
t	Zeit, Branddauer
$t_{fi,d}$	Bemessungswert der Feuerwiderstandsdauer eines Bauteiles im Brandfall
$t_{ m fi,requ}$	erforderliche Feuerwiderstandsdauer im Brandfall
t_{i}	Feuerwiderstandsdauer bezüglich der Wärmedämmung
u	geometrischer Mittelwert der Achsabstände u_1 und u_2 (Verbundquerschnitt mit teilweise einbetonierten Stahlprofilen)

u₁, u₂ kleinster Abstand vom Mittelpunkt eines Bewehrungsstabes zur Innenseite des Stahlflansches

oder zur Betonoberfläche

 z_i , z_i Abstand der plastischen Nulllinie zum Schwerpunkt einer Teilfläche A_i oder A_i

Große griechische Buchstaben

 Δl temperaturbedingte Verlängerung eines Bauteils

 $\Delta l/l$ thermische Dehnung

 Δt Zeitintervall

 $\Delta \theta_{\rm a,t}$ Temperaturzuwachs eines Stahlträgers innerhalb eines Zeitintervalls Δt

 $\Delta \theta_t$ Zuwachs der Gastemperatur [°C] innerhalb eines Zeitintervalls Δt

Φ Konfigurations- oder Sichtfaktor

Kleine griechische Buchstaben

α Neigungswinkel des Stegs

α_c konvektiver Wärmeübergangskoeffizient

 $lpha_{
m slab}$ Koeffizient zur Berücksichtigung der Annahme eines rechteckigen Spannungsblocks bei der

Bemessung von Decken

 $\gamma_{\rm G}$ Teilsicherheitsbeiwert für ständige Einwirkungen $G_{\rm k}$

 $\gamma_{M,fi}$ Teilsicherheitsbeiwert für eine Werkstoffeigenschaft im Brandfall

7M,fi,a Teilsicherheitsbeiwerte für die Festigkeit von Baustahl im Brandfall

7M,fi,c Teilsicherheitsbeiwert für die Festigkeit von Beton im Brandfall

 $\gamma_{M,fi,s}$ Teilsicherheitsbeiwert für die Festigkeit von Bewehrungsstahl im Brandfall

 $\gamma_{M,fi,v}$ Teilsicherheitsbeiwert für die Abscherfestigkeit von Kopfbolzendübeln im Brandfall

 γ_{Q} Teilsicherheitsbeiwert für veränderliche Einwirkungen Q_{k}

Teilsicherheitsbeiwert für die Abscherfestigkeit von Kopfbolzendübeln für die Bemessung bei

Normaltemperatur

 δ Exzentrizität

 ε Dehnung

 ε_{a} axiale Dehnung des Stahlprofils einer Stütze

 $\mathcal{E}_{\mathsf{a},\theta}$ Dehnung im Brandfall

 $\varepsilon_{ae,\theta}$ Grenzdehnung im Brandfall

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

$\mathcal{E}_{ay, \theta}$	Fließdehnung im Brandfall
$\mathcal{E}_{ap, heta}$	Dehnung an der Proportionalitätsgrenze
$\mathcal{E}_{au, \theta}$	Grenzdehnung für den Bereich des Fließplateaus
€ _C	axiale Dehnung des Betons einer Stütze
$\mathcal{E}_{c,\theta}$	Betonstauchung im Brandfall
$\mathcal{E}_{Ce, \theta}$	maximale Betonstauchung im Brandfall
$\mathcal{E}_{ce,\thetamax}$	maximale Betonstauchung im Brandfall bei maximaler Temperatur
$\mathcal{E}_{cu, \theta}$	die zu $f_{q_{\theta}}$ gehörige Betonstauchung
$\mathcal{E}_{cu, \theta max}$	Betonstauchung bei maximaler Temperatur
Eq	Emissivität der Flamme
\mathcal{E}_{m}	Emissivität der Oberfläche eines Bauteils
$\mathcal{E}_{\mathbf{S}}$	axiale Dehnung des Bewehrungsstahls einer Stütze
ф	Stabdurchmesser von Betonstahl
ϕ_{s}	Stabdurchmesser von Bügelbewehrung
φ _r	Stabdurchmesser der Längsbewehrung in den Ecken von Bügelbewehrung
η	Lastausnutzungsgrad nach ENV 1994-1-1
$\eta_{\scriptscriptstyle{ar{n}}}$	Reduktionsfaktor für $E_{ m d}$ zur Ermittlung von $E_{ m fi,d}$
$\eta_{ extsf{fi,t}}$	Lastausnutzungsgrad für die Bemessung für den Brandfall
θ	Temperatur
$ heta_{a}$	Temperatur von Baustahl
$ heta_{a,t}$	Stahltemperatur zum Zeitpunkt t unter der Annahme, dass im ganzen Stahlquerschnitt die gleiche Temperatur vorhanden ist
$ heta_{\! exttt{c}}$	Temperatur von Beton
$ heta_{ extsf{cr}}$	kritische Temperatur von Bauteilen
θ_{l}	Temperatur einer Teilfläche A_i
$ heta_{ ext{lim}}$	Grenztemperatur
$ heta_{max}$	maximale Temperatur
$ heta_{\!\scriptscriptstyleT}$	Temperatur von Steifen
$ heta_{\!R}$	die Temperatur von Zulagebewehrung in den Rippen
$ heta_{\! extsf{s}}$	Temperatur von Bewehrungsstahl
θ_{i}	Brandraumtemperatur zum Zeitpunkt t

θ_{v}	Temperatur von Kopfbolzendübeln
$ heta_{\!\scriptscriptstyleW}$	Temperatur im Steg
λ_{a}	Wärmeleitfähigkeit des Stahls
$\lambda_{ extsf{c}}$	Wärmeleitfähigkeit des Betons
λ_{p}	Wärmeleitfähigkeit der Brandschutzbekleidung
$\overline{\lambda}$	bezogene Schlankheit
$\overline{\lambda}_{\theta}$	bezogene Schlankheitsgrad von Steifen im Brandfall
ξ	Reduktionsfaktor für ungünstige, ständige Einwirkungen G_{k}
$ ho_{a}$	Rohdichte des Stahls
$ ho_{\! ext{c}}$	Rohdichte des Betons
$ ho_{ extsf{c}, ext{NC}}$	Rohdichte des Normalbetons
$ ho_{ extsf{c,LC}}$	Rohdichte des Leichtbetons
$ ho_{\!p}$	Rohdichte der Brandschutzbekleidung
σ	Spannung
$\sigma_{\!\!a, heta}$	Spannung in dem Stahlprofil im Brandfall
$\sigma_{\!\scriptscriptstyle{C},\theta}$	Druckspannung im Beton im Brandfall
$\sigma_{\! s, heta}$	Spannung im Betonstahl im Brandfall
$oldsymbol{arphi}_{a,0}$	Reduktionskoeffizient für das Stahlprofil aufgrund der Auswirkungen von thermische Spannungen im Brandfall
$oldsymbol{arphi}_{c, heta}$	Reduktionskoeffizient für Beton aufgrund der Auswirkungen von thermischen Spannungen in Brandfall
$oldsymbol{arphi}_{s, heta}$	Reduktionskoeffizient für Betonstahl aufgrund der Auswirkungen von thermischen Spannunger im Brandfall
χ	Reduktions- oder Korrekturkoeffizient und -faktor
Χz	Reduktions- oder Korrekturkoeffizient und -faktor (für Biegung um die z-Achse)
4 0,1	Kombinationsfaktor für den charakteristischen oder seltenen Wert einer veränderlichen Einwirkung
<i>Ψ</i> 1,1	Kombinationsfaktor für den häufigen Anteil einer veränderlichen Einwirkung
Ψ _{2,1}	Kombinationsfaktor für den quasi-ständigen Anteil einer veränderlichen Einwirkung
V fi	Kombinationsfaktor für eine veränderliche Einwirkung im Brandfall, gegeben entweder durch $\psi_{1,1}$ oder $\psi_{2,1}$

2 Grundlagen der Bemessung

2.1 Anforderungen

2.1.1 Grundlegende Anforderungen

- (1)P Falls Tragfähigkeit im Brandfall gefordert wird, müssen Verbundkonstruktionen aus Stahl und Beton so bemessen und ausgeführt werden, dass ihre Tragfähigkeitsfunktion während der maßgebenden Brandbeanspruchung aufrechterhalten bleibt.
- (2)P Wird eine Unterteilung in Brandabschnitte gefordert, müssen die Bauteile, die den Brandabschnitt begrenzen, einschließlich Verbindungen, so bemessen und ausgeführt werden, dass ihre raumabschließende Wirkung während der maßgebenden Brandbeanspruchung aufrechterhalten bleibt. Dies muss erforderlichenfalls sicherstellen, dass
- kein Verlust des Raumabschlusses auftritt;
- kein Versagen der Wärmedämmung auftritt.
- ANMERKUNG 1 Für die Definition siehe EN 1991-1-2, 1.5.1.8 und 1.5.1.9.
- ANMERKUNG 2 Bei Verbunddecken ist das Strahlungskriterium nicht maßgebend.
- (3)P Verformungskriterien sind anzuwenden, wenn Verformungen des Tragwerks im Hinblick auf Brandschutzbekleidungen oder Bemessungskriterien für raumabschließende Bauteile zu berücksichtigen sind.
- (4) Die Verformung des Tragwerks braucht nicht berücksichtigt zu werden, wenn:
- die Wirksamkeit der Brandschutzbekleidung nach 3.3.4 sichergestellt ist und
- die raumabschließenden Bauteile die Anforderungen an eine nominelle Brandbeanspruchung erfüllen.

2.1.2 Nominelle Brandbeanspruchung

- (1)P Bauteile müssen unter Brandbeanspruchung durch die Einheits-Temperaturzeitkurve die Kriterien R, E und I wie folgt erfüllen:
- nur raumabschließende Funktion: Raumabschluss (Kriterium E) und erforderlichenfalls Wärmedämmung (Kriterium I);
- nur tragende Funktion: Tragfähigkeit (Kriterium R);
- raumabschließende und tragende Funktion: die Kriterien R, E und erforderlichenfalls I.
- (2) Das Kriterium "R" darf dann als erfüllt betrachtet werden, wenn ausreichende Tragfähigkeit während der erforderlichen Branddauer erhalten bleibt.
- (3) Das Kriterium "I" darf dann als erfüllt betrachtet werden, wenn die mittlere Temperaturerhöhung auf der gesamten brandabgewandten Seite 140 K nicht überschreitet und die maximale Temperaturerhöhung an keiner Stelle 180 K überschreitet.
- (4) Für die Außenbrandkurve sind in der Regel dieselben Kriterien zu verwenden, jedoch ist in der Regel der Verweis auf diese besondere Kurve durch die Buchstaben "EF" zu kennzeichnen.

ANMERKUNG Siehe EN 1991-1-2, 1.5.3.5 und 3.2.2.

(5) Für die Hydrokarbonkurve sind in der Regel dieselben Kriterien zu verwenden, jedoch ist in der Regel der Verweis auf diese besondere Kurve durch die Buchstaben "HC" zu kennzeichnen.

ANMERKUNG Siehe EN 1991-1-2, 1.5.3.11 und 3.2.3.

2.1.3 Parametrische Brandbeanspruchung

- (1) Die Traglastfunktion ist sichergestellt, wenn ein Versagen über die gesamte Dauer der Brandbeanspruchung, einschließlich Abkühlphase, oder eine erforderliche Branddauer verhindert wird.
- (2) Die raumabschließende Funktion hinsichtlich der Wärmedämmung ist dann erfüllt, wenn
- zum Zeitpunkt der maximalen Brandraumtemperatur die mittlere Temperaturerhöhung auf der gesamten brandabgewandten Seite 140 K nicht überschreitet und die maximale Temperaturerhöhung an keiner Stelle 180 K überschreitet,
- während der Abkühlphase des Brandes die mittlere Temperaturerhöhung auf der gesamten brandabgewandten Seite $\Delta\theta_1$ nicht überschreitet und die maximale Temperaturerhöhung an keiner Stelle $\Delta\theta_2$ überschreitet.

ANMERKUNG Die Werte für $\Delta\theta_1$ und $\Delta\theta_2$ können für die Anwendung in den einzelnen Ländern durch den Nationalen Anhang bestimmt werden. Die empfohlenen Werte sind $\Delta\theta_1$ = 200 K und $\Delta\theta_2$ = 240 K.

2.2 Einwirkungen

- (1)P Die thermischen und mechanischen Einwirkungen müssen EN 1991-1-2 entnommen werden.
- (2) Ergänzend zu EN 1991-1-2, 3.1(6) ist in der Regel die Emissivität von Stahl und Beton an der Bauteiloberfläche $\varepsilon_m = 0.7$ anzusetzen.

2.3 Bemessungswerte der Werkstoffeigenschaften

(1)P Die Bemessungswerte der mechanischen Materialparameter $X_{fi,d}$ (für Festigkeit und Verformung) sind wie folgt definiert:

$$X_{fi,d} = k_{\theta} X_k / \gamma_{Mfi} \tag{2.1}$$

Dabei ist

- X_k der charakteristische Wert oder Nennwert einer Festigkeits- oder Verformungseigenschaft (i. Allg. f_k oder E_k) bei der Bemessung für Normaltemperatur nach EN 1994-1-1;
- k_{θ} der Reduktionsfaktor einer Festigkeits- oder Verformungseigenschaft $(X_{k,\theta}/X_k)$ in Abhängigkeit von der Werkstofftemperatur siehe Abschnitt 3;
- $\gamma_{M/i}$ der Teilsicherheitsfaktor für die entsprechende Werkstoffeigenschaft für den Brandfall.

ANMERKUNG 1 Für die mechanischen Eigenschaften von Stahl und Beton sind die empfohlenen Werte für den Teilsicherheitsbeiwert im Brandfall $\gamma_{M,fi,a} = 1,0$; $\gamma_{M,fi,s} = 1,0$; $\gamma_{M,fi,c} = 1,0$; $\gamma_{M,fi,v} = 1,0$; wo Abweichungen erforderlich sind, dürfen diese in den entsprechenden nationalen Anhängen von EN 1992-1-2 und EN 1993-1-2 definiert werden.

ANMERKUNG 2 Wenn die vorgeschlagenen Zahlenwerte nicht verwendet werden, müssen die Bemessungstabellen eventuell angepasst werden.

(2)P Die Bemessungswerte der thermischen Materialeigenschaften X_{fid} sind wie folgt definiert:

- falls ein Zuwachs der Werte die Sicherheit erhöht;

$$X_{f,d} = X_{k,\theta}/\gamma_{M,f}$$
 (2.2a)

- falls ein Zuwachs der Werte die Sicherheit verringert.

$$X_{fid} = \gamma_{M,fi} X_{k\theta}$$
 (2.2b)

Dabei ist

- $X_{k,\theta}$ der charakteristischer Wert einer Werkstoffeigenschaft bei der Bemessung für den Brandfall, i. Allg. abhängig von der Werkstofftemperatur siehe 3.3;
- $\gamma_{M,fi}$ der Teilsicherheitsfaktor für die maßgebende Werkstoffeigenschaft bei der Bemessung für den Brandfall.

ANMERKUNG 1 Für die thermischen Eigenschaften von Stahl und Beton wird für den Teilsicherheitsbeiwert für Werkstoffe bei der Bemessung für den Brandfall der Wert _{7M,fi} = 1,0 empfohlen; wo Abweichungen erforderlich sind, dürfen diese in den relevanten Nationalen Anhängen von EN 1992-1-2 und EN 1993-1-2 definiert werden.

ANMERKUNG 2 Wenn die vorgeschlagenen Zahlenwerte nicht verwendet werden, müssen die Bemessungstabellen evtl. angepasst werden.

(3) Der Bemessungswert für die Betondruckfestigkeit ist in der Regel mit 1,0 f_c , dividiert durch $\gamma_{M,fi,c}$ anzunehmen, bevor die Festigkeit aufgrund der Temperatur nach 3.2.2 abgemindert wird.

2.4 Nachweismethoden

2.4.1 Allgemeines

- (1)P Das Tragwerksmodell für die Bemessung nach dieser Norm muss das zu erwartende Verhalten des Gesamttragwerks bei Brandbeanspruchung widerspiegeln.
- (2)P Für die relevante Branddauer t muss nachgewiesen werden:

$$E_{fidt} \le R_{fidt} \tag{2.3}$$

Dabei ist

- $E_{fi.d.t}$ der Bemessungswert der Einwirkung im Brandfall, ermittelt nach EN 1991-1-2, unter Berücksichtigung der Auswirkungen von thermischen Ausdehnungen und Verformungen;
- $R_{\it fi,d.t.}$ der entsprechende Bemessungswert der Tragfähigkeit im Brandfall.
- (3) Die Tragwerksberechnung im Brandfall ist in der Regel nach EN 1990, 5.1.4(2) durchzuführen.

ANMERKUNG Zum Nachweis der Anforderungen an die Feuerwiderstandsdauer ist eine Bauteilberechnung ausreichend.

- (4) Gelten bestimmte Anwendungsregeln in diesem Teil 1-2 nur für die Einheits-Temperaturzeitkurve, so ist dieses in den entsprechenden Regeln gekennzeichnet.
- (5) Den Bemessungstabellen nach 4.2 liegt die Einheits-Temperaturzeitkurve zu Grunde.

(6)P Alternativ zu einer Bemessung mit den rechnerischen Nachweismethoden darf sich die Bemessung im Brandfall auch auf Ergebnisse von Brandversuchen oder auf Brandversuche in Verbindung mit Berechnungen stützen; siehe dazu EN 1990, 5.2.

2.4.2 Bauteilberechnung

- (1) Die mechanischen Einwirkungen sind in der Regel zum Zeitpunkt t=0 unter Verwendung der Kombinationsfaktoren $\psi_{1.1}$ oder $\psi_{2.1}$ nach EN 1991-1-2, 4.3.1 (2) zu bestimmen.
- (2) Als Vereinfachung zu (1) darf die Größe der Einwirkung $E_{fi,d,t}$ aus der Bauteilbemessung bei normaler Temperatur abgeleitet werden:

$$E_{fi,d,t} = E_{fi,d} = \eta_{fi} E_d$$
 (2.4)

Dabei ist

- E_d der Bemessungswert für die entsprechende Kraft oder das entsprechende Moment aus der Bemessung bei Normaltemperatur für eine Grundkombination der Einwirkungen (siehe EN 1990);
- η_{fi} der Reduktionsfaktor für E_d .
- (3) Der Reduktionsfaktor η_{ji} ist in der Regel für die Lastkombination (6.10) aus EN 1990 wie folgt zu bestimmen:

$$\eta_{fi} = \frac{G_k + \psi_{fi} Q_{k,l}}{\gamma_G G_k + \gamma_{O,l} Q_{k,l}}$$
(2.5)

oder für die Lastkombination (6.10a) und (6.10b) aus EN 1990 durch den kleineren Wert der beiden folgenden Gleichungen:

$$\eta_{fi} = \frac{G_k + \psi_{fi} Q_{k,l}}{\gamma_G G_k + \gamma_{O,l} \psi_{0,l} Q_{k,l}}$$
(2.5a)

$$\eta_{fl} = \frac{G_k + \psi_{fl} Q_{k,l}}{\xi \gamma_G G_k + \gamma_{O,l} Q_{k,l}}$$
 (2.5b)

Dabei ist

- $Q_{k,l}$ der charakteristische Wert der führenden veränderlichen Einwirkung 1;
- G_k der charakteristische Wert für ständige Einwirkungen;
- γ_G der Teilsicherheitsbeiwert für ständige Einwirkungen G_k
- $\gamma_{\mathcal{Q}, l}$ der Teilsicherheitsbeiwert für veränderliche Einwirkungen $\mathcal{Q}_{k, l}$.
- ξ der Reduktionsfaktor für ungünstige ständige Einwirkungen G_k .
- $\psi_{0,1}$ der Kombinationsfaktor für den charakteristischen Wert einer veränderlichen Einwirkung;
- $\psi_{\rm fi}$ der Kombinationsbeiwert für eine veränderliche Einwirkung im Brandfall, gegeben entweder durch $\psi_{\rm 1,1}$ (häufiger Wert) oder $\psi_{\rm 2,1}$ (quasi-ständiger Wert) nach EN 1991-1-2, 4.3.1(2).

ANMERKUNG 1 Bild 2.1 zeigt den Verlauf des Reduktionsfaktors η_h in Abhängigkeit von dem Lastverhältnis $Q_{k,1}/G_k$ für verschiedene Werte des Kombinationsfaktors $\psi_h = \psi_{1,1}$ nach Gleichung (2.5) unter folgenden Annahmen: $\gamma_G = 1,35$ und $\gamma_Q = 1,5$. Teilsicherheitsbeiwerte werden in den entsprechenden Nationalen Anhängen von EN 1990 angegeben. Die Gleichungen (2.5a) und (2.5b) ergeben leicht höhere Werte.

ANMERKUNG 2 Vereinfacht darf der Wert $\eta_{h=0.65}$ verwendet werden; allerdings wird für Verkehrslasten nach der Lastgruppe E nach EN 1991-1-1 der Wert 0,7 empfohlen (Bereiche, wo eine Anhäufung von Gegenständen zu erwarten ist; einschließlich Zugangsbereiche).

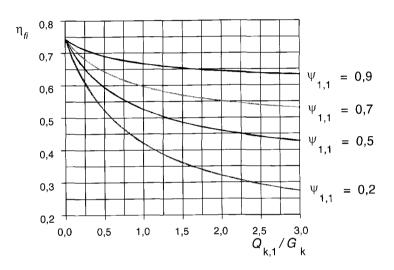


Bild 2.1 — Verlauf des Reduktionsfaktors $\eta_{\rm fi}$ in Abhängigkeit des Lastverhältnisses $Q_{\rm k,1}/G_{\rm k}$

- (4) Es müssen nur temperaturbedingte Verformungen berücksichtigt werden, die aus Temperaturgradienten über dem Querschnitt resultieren. Die Auswirkungen axialer oder ebener thermischer Ausdehnung dürfen vernachlässigt werden.
- (5) Die Randbedingungen an Auflagern und Enden von Bauteilen dürfen während des gesamten Brandverlaufes als unveränderlich angenommen werden.
- (6) Die Bemessungstabellen, die vereinfachten oder die allgemeinen Bemessungsverfahren, die in 4.2, 4.3 bzw. 4.4 angegeben sind, sind für den Nachweis von Bauteilen im Brandfall geeignet.

2.4.3 Teiltragwerksberechnung

- (1) Die mechanischen Einwirkungen sind in der Regel zum Zeitpunkt t=0 unter Verwendung der Kombinationsfaktoren $\psi_{1,1}$ oder $\psi_{2,1}$ nach EN 1991-1-2, 4.3.1(2), zu bestimmen.
- (2) Anstelle einer Tragwerksberechnung im Brandfall zum Zeitpunkt t = 0 dürfen die Lagerreaktionen und die inneren Kräfte und Momente an den Rändern der Teiltragwerke aus einer Tragwerksberechnung bei Normaltemperatur nach 2.4.2 abgeleitet werden.
- (3) Das zu bemessene Teiltragwerk ist in der Regel auf Basis der zu erwartenden temperaturbedingten Längenänderungen und Verformungen so auszuwählen, dass sein Zusammenwirken mit anderen Tragwerksteilen durch zeitunabhängige Lagerungs- und Randbedingungen während der Brandbeanspruchung angenähert werden kann.
- (4)P Für das zu bemessene Teiltragwerk müssen die maßgebende Versagensart im Brandfall, die temperaturabhängigen Materialparameter und Bauteilsteifigkeiten sowie Auswirkungen von temperaturabhängigen Ausdehnungen und Verformungen (indirekte Einwirkungen im Brandfall) berücksichtigt werden.

(5) Während der Brandbeanspruchung dürfen die Randbedingungen an den Lagern und die Kräfte und Momente an den Rändern des Teiltragwerkes als konstant angenommen werden.

2.4.4 Gesamttragwerksberechnung

(1)P Gesamttragwerksberechnungen für den Brandfall sind unter Berücksichtigung des maßgebenden Versagenszustandes unter Brandbeanspruchung, der temperaturabhängigen Werkstoffeigenschaften und Bauteilsteifigkeiten und der Auswirkungen temperaturbedingter Längenänderungen und Verformungen durchzuführen.

3 Werkstoffeigenschaften

3.1 Allgemeines

- (1)P Im Brandfall müssen die temperaturabhängigen Eigenschaften berücksichtigt werden.
- (2) Die thermischen und mechanischen Eigenschaften von Stahl und Beton sind in der Regel nach den folgenden Abschnitten zu bestimmen.
- (3)P Die in 3.2 angegebenen Werte für Werkstoffeigenschaften müssen als charakteristische Werte nach 2.3(1)P behandelt werden.
- (4) Die mechanischen Eigenschaften von Beton, Bewehrungs- und Spannstahl bei Normaltemperatur (20 °C) sind in der Regel den Werten nach EN 1992-1-1 für eine Bemessung bei Normaltemperatur entsprechend anzunehmen.
- (5) Die mechanischen Eigenschaften für Stahl bei 20 °C sind in der Regel den Werten entsprechend EN 1993-1-1 für eine Bemessung bei Normaltemperatur anzunehmen.

3.2 Mechanische Eigenschaften

3.2.1 Festigkeits- und Verformungseigenschaften von Baustahl

(1) Für Aufheizgeschwindigkeiten zwischen 2 K/min und 50 K/min sind die Festigkeits- und Verformungseigenschaften von Baustahl bei erhöhten Temperaturen in der Regel den in Bild 3.1 dargestellten Spannungs-Dehnungsbeziehungen zu entnehmen.

ANMERKUNG Es wurde für die Regeln in dieser Norm angenommen, dass die Aufheizgeschwindigkeiten in den angegebenen Grenzen liegen.

- (2) Die in Bild 3.1 und Tabelle 3.1 angegebenen Spannungs-Dehnungsbeziehungen sind durch drei Parameter definiert:
- die Neigung der elastischen Geraden $E_{s,\theta}$.
- die Proportionalitätsgrenze $f_{ap,\theta}$.
- das maximale Spannungsniveau oder die effektive Streckgrenze $f_{\mathsf{ay},\theta}$.

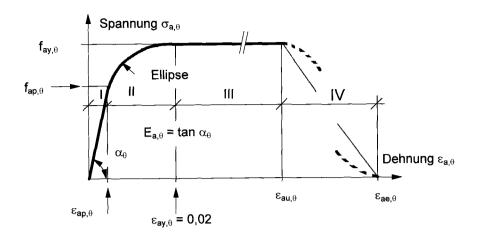


Bild 3.1 — Mathematisches Modell der Spannungs-Dehnungsbeziehungen von Baustahl bei erhöhten Temperaturen

Tabelle 3.1 — Beziehungen zwischen verschiedenen Parametern des mathematischen Modells nach Bild 3.1

Dehnungs- Bereich	Spannung σ	Tangentenmodul	
I / elastisch	$E_{a, heta}\; oldsymbol{arepsilon}_{a, heta}$	$E_{a, heta}$	
$arepsilon \leq arepsilon_{ap, heta}$ II / Übergang elliptisch	$(f_{ap,\theta}-c)+\frac{b}{a}\sqrt{a^2-(\varepsilon_{ay,\theta}-\varepsilon_{a,\theta})^2}$		
$arepsilon_{ap, heta} \leq arepsilon$	mit	$big(arepsilon_{a\!v, heta}-arepsilon_{a, heta}ig)$	
$arepsilon \leq arepsilon_{ay, heta}$	$a^2 = ig(arepsilon_{ay, heta} - arepsilon_{ap, heta} ig) ig(arepsilon_{ay, heta} - arepsilon_{ap, heta} + c / E_{a, heta} ig)$	$\frac{a\sqrt{a^2-(\varepsilon_{ay,\theta}-\varepsilon_{a,\theta})^2}}{a\sqrt{a^2-(\varepsilon_{ay,\theta}-\varepsilon_{a,\theta})^2}}$	
	$b^{2} = E_{a,\theta} \left(\varepsilon_{ay,\theta} - \varepsilon_{ap,\theta} \right) c + c^{2}$	(- 3), (- 3), (- 3)	
	$c = \frac{(f_{ay,\theta} - f_{ap,\theta})^2}{E_{a,\theta}(\varepsilon_{ay,\theta} - \varepsilon_{ap,\theta}) - 2(f_{ay,\theta} - f_{ap,\theta})}$		
III / plastisch		0	
$\mathcal{E}_{ay, \theta} \leq \mathcal{E}$	$f_{ay, heta}$	0	
$arepsilon \leq arepsilon_{au, heta}$		<u> </u>	

- (3) Tabelle 3.2 enthält die Reduktionsfaktoren k_{θ} für erhöhte Stahltemperaturen θ_a , die zur Ermittlung der Parameter nach 3.2.1(2) mit den entsprechenden Bezugswerten E_a oder f_{ay} zu multiplizieren sind. Zwischenwerte dürfen linear interpoliert werden.
- (4) Sofern örtliches Stabilitätsversagen ausgeschlossen und das Verhältnis $f_{au,\theta}/f_{ay}$ auf 1,25 begrenzt ist, dürfen die Spannungs-Dehnungsbeziehungen nach 3.2.1(1)P für Temperaturen unter 400 °C durch einen optionalen Verfestigungsbereich nach Tabelle 3.2 erweitert werden.

ANMERKUNG Der optionale Verfestigungsbereich wird im informativen Anhang A näher beschrieben.

(5) Der Verfestigungsbereich darf nur dann angesetzt werden, wenn die Berechnung auf der Basis allgemeiner Berechnungsverfahren nach 4.4 erfolgt und wenn nachgewiesen wird, dass ein örtliches Versagen (z. B. örtliches Beulen, Schubversagen, Betonabplatzungen usw.) bei großen Dehnungen nicht eintritt.

ANMERKUNG Werte für $\mathcal{E}_{au,\theta}$ und $\mathcal{E}_{ae,\theta}$, die die Bereiche der maximalen Spannungen und den abfallenden Ast nach Bild 3.1 beschreiben, dürfen dem informativen Anhang A entnommen werden.

- (6) Die Formulierung der Spannungs-Dehnungsbeziehungen wurde aus Zugversuchen abgeleitet. Diese Beziehungen dürfen auch für Stahl im Druckbereich verwendet werden.
- (7) Im Falle von Brandbeanspruchungen nach EN 1991-1-2, 3.3 (Naturbrand-Modelle) insbesondere im Abkühlungsbereich dürfen die in Tabelle 3.2 für die Spannungs-Dehnungsbeziehungen von Baustahl angegebenen Werte als hinreichend genaue Näherung verwendet werden.

Tabelle 3.2 — Reduktionsfaktoren k_{θ} für Spannungs-Dehnungsbeziehungen von Baustahl unter erhöhten Temperaturen.

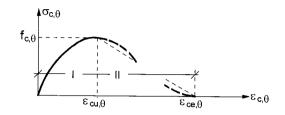
Stahl-temperatur $\theta_{\rm a}$ [°C]	$\mathbf{k}_{E,\theta} = \frac{E_{a,\theta}}{E_a}$	$\mathbf{k}_{p,\theta} = rac{f_{ap,\theta}}{f_{ay}}$	$\mathbf{k}_{\mathbf{y},\theta} = \frac{f_{ay,\theta}}{f_{ay}}$	$\mathbf{k}_{u,\theta} = \frac{f_{au,\theta}}{f_{ay}}$
20	1,00	1,00	1,00	1,25
100	1,00	1,00	1,00	1,25
200	0,90	0,807	1,00	1,25
300	0,80	0,613	1,00	1,25
400	0,70	0,420	1,0	0
500	0,60	0,360	0,78	
600	0,31	0,180	0,47	
700	0,13	0,075	0,23	
800	0,09	0,050	0,11	
900	0,0675	0,0375	0,06	
1 000	0,0450	0,0250	0,04	
1 100	0,0225	0,0125	0,02	
1 200	0	0	0	

3.2.2 Festigkeits- und Verformungseigenschaften von Beton

(1) Für Aufheizgeschwindigkeiten zwischen 2 K/min und 50 K/min sind die Festigkeits- und Verformungseigenschaften von Beton bei erhöhten Temperaturen in der Regel der in Bild 3.2 dargestellten Spannungs-Dehnungsbeziehung zu entnehmen.

ANMERKUNG Es wurde für die Regeln in dieser Norm angenommen, dass die Aufheizgeschwindigkeit in den angegebenen Grenzen liegt.

(2)P Die Festigkeits- und Verformungseigenschaften einachsig beanspruchten Betons bei erhöhten Temperaturen müssen den Spannungs-Dehnungsbeziehungen nach EN 1992-1-2, siehe auch Bild 3.2, entnommen werden.


- (3) Die Spannungs-Dehnungsbeziehungen nach Bild 3.2 sind durch zwei Parameter definiert:
- die Druckfestigkeit $f_{c, heta}$;
- die zu $f_{c, heta}$ gehörende Betonstauchung $\mathcal{E}_{cu, heta}$.
- (4) Tabelle 3.3 enthält für erhöhte Betontemperaturen θ_c die Stauchungen $\varepsilon_{cu,\theta}$ und die Reduktionsfaktoren $k_{c,\theta}$ die zur Ermittlung von $f_{c,\theta}$ mit dem Bezugswert f_c zu multiplizieren sind. Zwischenwerte dürfen linear interpoliert werden.

ANMERKUNG Infolge unterschiedlicher Versuchsverfahren zeigt $\varepsilon_{\text{cu},\theta}$ eine beträchtliche Streuung, die in Tabelle B.1 des informativen Anhanges B dargestellt ist. Empfohlene Werte für $\varepsilon_{\text{ce},\theta}$, die den Bereich des absteigenden Astes beschreiben, dürfen dem Anhang B entnommen werden.

- (5) Für Leichtbeton (LC) sind in der Regel Werte für $\mathcal{E}_{cu,\theta}$, falls erforderlich, aus Versuchen zu ermitteln.
- (6) Die Werte der Tabelle 3.3 gelten für alle quarzitischen Betone. Für kalkhaltige Betone dürfen die gleichen Werte verwendet werden. Diese Annahme ist üblicherweise konservativ. Für genauere Informationen wird auf ENV 1992-1-2, Tabelle 3.1 verwiesen.
- (7) Im Falle von Brandbeanspruchungen nach ENV 1991-1-2, 3.3 (Naturbrand-Modelle) insbesondere im Abkühlungsbereich ist in der Regel das mathematische Modell der Spannungs-Dehnungsbeziehungen für Beton in Bild 3.2 zu modifizieren.

ANMERKUNG Da Beton nach Aufheizung und Abkühlung seine Anfangsdruckfestigkeit nicht wieder erreicht, darf der Vorschlag im informativen Anhang C, in Verbindung mit einem allgemeinen Berechnungsmodell nach 4.4, angewendet werden.

- (8) Die Zugfestigkeit von Beton darf, auf der sicheren Seite liegend, zu null angenommen werden.
- (9) Wird eine Zugfestigkeit von Beton bei einem Nachweis mit Hilfe eines allgemeinen Berechnungsmodells berücksichtigt, so sind in der Regel die Werte nach EN 1992-1-2, 3.2.2.2 nicht zu überschreiten.
- (10) Bei Betonzugspannungen sind in der Regel Modelle mit abfallender Spannungs-Dehnungskurve wie in Bild 3.2 zu verwenden.

BEREICH I:

$$\begin{split} \sigma_{c,\theta} &= f_{c,\theta} \left[\left. 3 \left(\frac{\mathcal{E}_{c,\theta}}{\mathcal{E}_{cu,\theta}} \right) \right/ \left\{ 2 + \left(\frac{\mathcal{E}_{c,\theta}}{\mathcal{E}_{cu,\theta}} \right)^3 \right\} \right] \\ k_{c,\theta} &= \frac{f_{c,\theta}}{f_c} \\ \text{und } \mathcal{E}_{cu,\theta} \end{split} \right\} \text{ entsprechend den Werten nach Tabelle 3.3}$$

BEREICH II:

Aus numerischen Gründen ist in der Regel ein abfallender Ast anzunehmen.

Bild 3.2 — Mathematisches Modell der Spannungs-Dehnungsbeziehungen von Beton im Druckbereich bei erhöhten Temperaturen

Tabelle 3.3 — Werte für die zwei Hauptparameter der Spannungs-Dehnungsbeziehungen von Normalbeton (NC) und Leichtbeton (LC) bei erhöhten Temperaturen

Betontemperatur	$k_{c,\theta} =$	$\overline{f_{c, heta}/f_c}$	$\varepsilon_{cu,\theta}$. 10^3
$ heta_c$ [°C]	NC	LC	NC
20	1	1	2,5
100	1	1	4,0
200	0,95	1	5,5
300	0,85	1	7,0
400	0,75	0,88	10,0
500	0,60	0,76	15,0
600	0,45	0,64	25,0
700	0,30	0,52	25,0
800	0,15	0,40	25,0
900	0,08	0,28	25,0
1 000	0,04	0,16	25,0
1 100	0,01	0,04	25,0
1 200	0	0	

3.2.3 Betonstahl

- (1) Für die Festigkeits- und Verformungseigenschaften von Betonstahl bei erhöhten Temperaturen darf das gleiche mathematische Modell angewendet werden wie für Baustahl nach 3.2.1.
- (2) Die drei Hauptparameter für warmgewalzten Betonstahl dürfen Tabelle 3.2 entnommen werden, unter der Voraussetzung, dass $k_{u,\theta}$ auf 1,1 begrenzt wird.
- (3) Die drei Hauptparameter für kaltverformten Betonstahl enthält Tabelle 3.4 (siehe auch EN 1992-1-2, Tabelle 3.2a).

ANMERKUNG Spannstahl wird in Verbundkonstruktionen üblicherweise nicht verwendet.

(4) Im Falle von Brandbeanspruchungen nach EN 1991-1-2, 3.3 (Naturbrand-Modelle) insbesondere im Abkühlungsbereich dürfen die in Tabelle 3.2 für die Spannungs-Dehnungsbeziehungen von Baustahl angegebenen Werte als hinreichend genaue Näherung für warmgewalzten Betonstahl verwendet werden.

Tabelle 3.4 — Reduktionsfaktoren k_{θ} für die Spannungs-Dehnungsbeziehungen von kaltverformtem Betonstahl

Stahltemperatur $ heta_s$	$\mathbf{k}_{E,\theta} = \frac{E_{s\theta}}{E_{s}}$	$\mathbf{k}_{p,\theta} = \frac{f_{sp,\theta}}{f_{sy}}$	$\mathbf{k}_{\mathbf{y},\theta} = \frac{f_{sy,\theta}}{f_{sy}}$
20	1,00	1,00	1,00
100	1,00	0,96	1,00
200	0,87	0,92	1,00
300	0,72	0,81	1,00
400	0,56	0,63	0,94
500	0,40	0,44	0,67
600	0,24	0,26	0,40
700	0,08	0,08	0,12
800	0,06	0,06	0,11
900	0,05	0,05	0,08
1 000	0,03	0,03	0,05
1 100	0,02	0,02	0,03
1 200	0	0	0

Thermische Eigenschaften

3.3.1 Bau- und Betonstahl

(1) Die thermische Dehnung von Stahl $\Delta l / l$ darf für alle Bau- und Betonstähle wie folgt ermittelt werden:

$$\Delta l l l = -2,416 \cdot 10^{-4} + 1,2 \cdot 10^{-5} \theta_a + 0,4 \cdot 10^{-8} \theta_a^2$$

für 20 °C <
$$\theta_a \le$$
 750 °C

$$\Delta l / l = 11 \cdot 10^{-3}$$

für 750 °C <
$$\theta_a \le$$
 860 °C

$$\Delta l / l = -6.2 \cdot 10^{-3} + 2 \cdot 10^{-5} \theta_a$$

für 860 °C <
$$\theta_a \le 1$$
 200 °C

Dabei ist

1 die Länge des Stahlteiles bei 20 °C;

11 die temperaturbedingte Verlängerung des Stahlteiles;

 θ_a die Stahltemperatur.

(2) Bild 3.3 zeigt den Verlauf der thermischen Dehnung in Abhängigkeit von der Temperatur.

(3) In vereinfachten Berechnungsverfahren (siehe 4.3) darf die thermische Dehnung als proportional zur Stahltemperatur betrachtet werden. Dabei ergibt sich die thermische Dehnung von Stahl zu:

$$\Delta l l l = 14 \cdot 10^{-6} \ (\theta_a - 20) \tag{3.1d}$$

(4) Die spezifische Wärmekapazität von Stahl c_a darf für alle Bau- und Betonstähle wie folgt ermittelt werden:

$$c_a = 425 + 7.73 \cdot 10^{-1} \ \theta_a - 1.69 \cdot 10^{-3} \ \theta_a^2 + 2.22 \cdot 10^{-6} \ \theta_a^3$$

J/kgK für
$$20 \le \theta_a \le 600$$
 °C

$$c_a = 666 - \left(\frac{13002}{\theta_a - 738}\right)$$

J/kgK für 600 <
$$\theta_a \le 735$$
 °C

$$c_a = 545 + \left(\frac{17820}{\theta_a - 731}\right)$$

J/kgK für 735 <
$$\theta_a \le 900$$
 °C

$$c_a = 650$$

J/kgK für 900 <
$$\theta_a \le 1$$
 200 °C

Dabei ist

 θ_a die Stahltemperatur.

(5) Bild 3.4 zeigt den Verlauf der spezifischen Wärmekapazität in Abhängigkeit von der Temperatur.

(6) In vereinfachten Berechnungsverfahren (siehe 4.3) darf die spezifische Wärmekapazität als unabhängig von der Stahltemperatur betrachtet werden. Dabei ist in der Regel folgender Durchschnittswert anzunehmen:

$$c_a = 600$$

(7) Die **Wärmeleitfähigkeit** von Stahl λ_a darf für alle Bau- und Betonstähle wie folgt ermittelt werden:

$$\lambda_a = 54 - 3.33 \cdot 10^{-2} \ \theta_a$$

für 20 °C
$$\leq \theta_a \leq$$
 800 °C

$$\lambda_a \approx 27.3$$

für 800 °C <
$$\theta_a$$
 \leq 1 200 °C

(3.3b)

Dabei ist

- θ_a die Stahltemperatur.
- (8) Bild 3.5 zeigt den Verlauf der Wärmeleitfähigkeit in Abhängigkeit von der Temperatur.
- (9) In vereinfachten Berechnungsverfahren (siehe 4.3) darf die Wärmeleitfähigkeit als unabhängig von der Stahltemperatur betrachtet werden. Dabei ist in der Regel folgender Durchschnittswert anzunehmen:

$$\lambda_a = 45$$
 W/mK (3.3c)

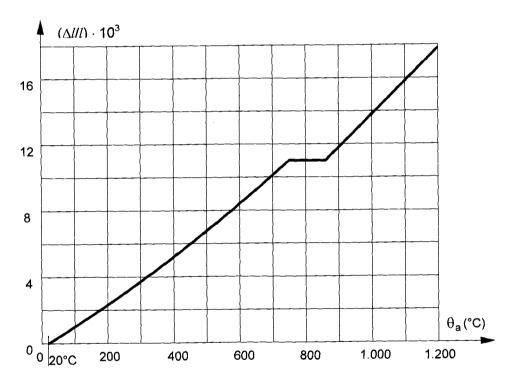


Bild 3.3 — Thermische Dehnung von Stahl als Funktion der Temperatur

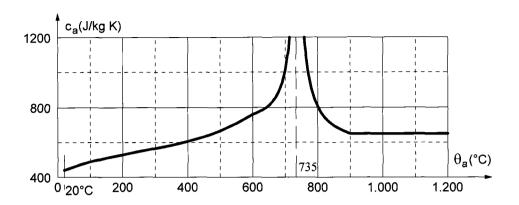


Bild 3.4 — Spezifische Wärmekapazität von Stahl als Funktion der Temperatur

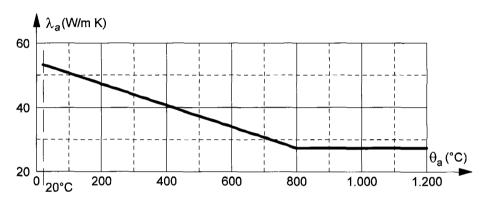


Bild 3.5 — Wärmeleitfähigkeit von Stahl als Funktion der Temperatur

3.3.2 Normalbeton

(1) Die **thermische Dehnung** $\Delta l / l$ von Normalbeton und Beton mit quarzhaltigen Zuschlägen darf wie folgt ermittelt werden:

$$\Delta l / l = -1.8 \cdot 10^{-4} + 9 \cdot 10^{-6} \theta_c + 2.3 \cdot 10^{-11} \theta_c^3$$
 für 20 °C $\leq \theta_c \leq 700$ °C (3.4a)

$$\Delta l / l = 14 \cdot 10^{-3}$$
 für 700 °C < $\theta_c \le 1 \, 200 \,$ °C (3.4b)

Dabei ist

l die Länge des Betonteiles bei 20 °C;

 Δl die temperaturbedingte Verlängerung des Betonteiles;

 θ_c die Betontemperatur.

ANMERKUNG Für Beton mit kalksteinhaltigen Zuschlägen gilt EN 1992-1-2, 3.3.1 (1).

(2) Bild 3.6 zeigt den Verlauf der thermischen Dehnung in Abhängigkeit von der Temperatur.

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

(3) In vereinfachten Berechnungsverfahren (siehe 4.3) darf die thermische Dehnung als proportional zur Betontemperatur betrachtet werden. Dabei ergibt sich die thermische Dehnung von Beton zu:

$$\Delta l / l = 18 \cdot 10^{-6} (\theta_c - 20)$$
 (3.4c)

(4) Die **spezifische Wärmekapazität** c_c darf für trockenen Normalbeton mit quarz- oder kalksteinhaltigen Zuschlägen wie folgt ermittelt werden:

$$c_c = 900$$
 J/kg K für 20 °C $\leq \theta_c \leq 100$ °C (3.5a)

$$c_c = 900 + (\theta_c - 100)$$
 J/kg K für 100 °C < $\theta_c \le 200$ °C (3.5b)

$$c_c = 1000 + (\theta_c - 200)/2$$
 J/kg K für 200 °C < $\theta_c \le 400$ °C (3.5c)

$$c_c = 1100$$
 J/kg K für 400 °C < $\theta_c \le 1 200$ °C (3.5d)

Dabei ist

 θ_{c} die Betontemperatur, °C.

ANMERKUNG Näherungsweise darf der Verlauf von c_c in Abhängigkeit von der Temperatur wie folgt angenommen werden:

$$c_{c,\theta} = 890 + 56.2 \left(\theta_c / 100\right) - 3.4 \left(\theta_c / 100\right)^2$$
 (3.5e)

- (5) Bild 3.7 zeigt den Verlauf der spezifischen Wärmekapazität nach Gleichung (3.5e) in Abhängigkeit von der Temperatur.
- (6) In vereinfachten Berechnungsverfahren (siehe 4.3) darf die spezifische Wärmekapazität als unabhängig von der Betontemperatur betrachtet werden. Dabei ist in der Regel folgender Wert anzunehmen:

$$c_c = 1000$$
 J/kg K (3.5f)

(7) Der **Feuchtegehalt** von Beton ist in der Regel gleich dem Gleichgewichts-Feuchtegehalt anzunehmen. Sind diese Daten nicht verfügbar, ist in der Regel ein Feuchtegehalt von 4 % des Betongewichtes nicht zu überschreiten.

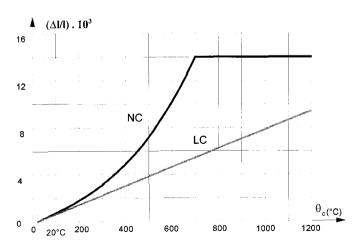


Bild 3.6 — Thermische Dehnung von Normalbeton (NC) und Leichtbeton (LC) als Funktion der Temperatur

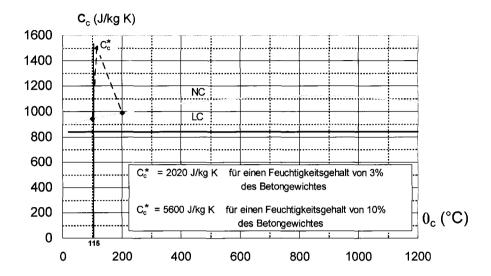


Bild 3.7 — Spezifische Wärmekapazität von Normalbeton (NC) und Leichtbeton (LC) als Funktion der Temperatur

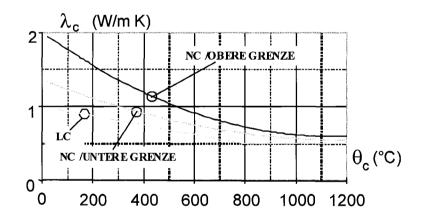


Bild 3.8 — Wärmeleitfähigkeit von Normalbeton (NC) und Leichtbeton (LC) als Funktion der Temperatur

(8) Wird der Feuchtegehalt nicht bei der Wärmebilanz berücksichtigt, darf die Funktion für die spezifische Wärme nach (4) zwischen 100 °C und 200 °C durch einen Höchstwert bei 115 °C (siehe Bild 3.7) ergänzt werden:

$c_c^* = 2 \ 020$	für einen Feuchtegehalt von 3 % des Betongewichtes	J/kg K	(3.5g)
$c_c \sim 2.020$	idi elileti i edentegerian voti 5 % des betorigewichtes	J/Kg K	(3.59

$$c_c^* = 5\,600$$
 für einen Feuchtegehalt von 10 % des Betongewichtes J/kg K (3.5h)

Letzteres kann bei betongefüllten Hohlprofilen auftreten.

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

(9) Die Wärmeleitfähigkeit λ_c darf für Normalbeton wie folgt zwischen der in (10) gegebenen oberen und unteren Grenze ermittelt werden.

Der Wert der Wärmeleitfähigkeit darf durch den Nationalen Anhang in dem Bereich, der durch die ANMERKUNG 1 obere und die untere Grenze beschrieben wird, festgesetzt werden.

Die obere Grenze wurde aus Versuchen von Verbundbauteilen abgeleitet. Die Verwendung der oberen Grenze wird empfohlen.

(10) Die obere Grenze für die Wärmeleitfähigkeit λ_c von Normalbeton darf wie folgt ermittelt werden:

$$\lambda_c = 2 - 0.2451 (\theta_c / 100) + 0.0107 (\theta_c / 100)^2$$
 W/mK für 20 °C $\leq \theta_c \leq 1$ 200 °C

(3.6a)

Dabei ist

 $\theta_{\hat{c}}$ die Betontemperatur.

Die untere Grenze für die Wärmeleitfähigkeit λ_c von Normalbeton darf wie folgt ermittelt werden:

$$\lambda_c = 1.36 - 0.136 \left(\theta_c \ / \ 100 \right) + 0.0057 \left(\theta_c \ / \ 100 \right)^2$$
 W/mK für 20 °C $\leq \theta_c \leq 1 \ 200 \ ^{\circ}$ C

(3.6b)

(3.6c)

Dabei ist

die Betontemperatur. θ_{c}

- (11) Bild 3.8 zeigt den Verlauf der Wärmeleitfähigkeit in Abhängigkeit von der Temperatur.
- (12) In vereinfachten Berechnungsverfahren (siehe 4.3) darf die Wärmeleitfähigkeit als unabhängig von der Betontemperatur betrachtet werden. Dabei ist in der Regel folgender Wert anzunehmen:

$$\lambda_c = 1,60$$
 W/mK

3.3.3 Leichtbeton

(1) Die **thermische Dehnung** $\Delta l / l$ von Leichtbeton darf wie folgt ermittelt werden:

$$\Delta l / l = 8 \cdot 10^{-6} (\theta_c - 20) \tag{3.7}$$

Dabei ist

1 die Länge des Leichtbetonteiles bei 20 °C;

die temperaturbedingte Verlängerung des Leichtbetonteiles; Δl

 θ_{c} die Leichtbetontemperatur, °C.

(2) Die spezifische Wärmekapazität c_c darf als unabhängig von der Betontemperatur wie folgt angenommen werden:

$$c_{o} = 840$$
 J/kg K (3.8)

(3) Die **Wärmeleitfähigkeit** λ_c darf für Leichtbeton wie folgt ermittelt werden:

$$\lambda_c = 1.0 - (\theta_c / 1600)$$
 W/mK für 20 °C $\leq \theta_c \leq 800$ °C (3.9a)

$$\lambda_{o} = 0.5$$
 W/mK für $\theta_{o} > 800$ °C (3.9b)

- (4) Die Bilder 3.6, 3.7 und 3.8 zeigen die Verläufe der thermischen Dehnung, der spezifischen Wärmekapazität und der Wärmeleitfähigkeit von Leichtbeton in Abhängigkeit von der Temperatur.
- (5) Der Feuchtegehalt von Leichtbeton ist in der Regel gleich dem Gleichgewichts-Feuchtegehalt anzunehmen. Sind diese Daten nicht verfügbar, ist in der Regel ein Feuchtegehalt von 5 % des Betongewichtes nicht zu überschreiten.

3.3.4 Brandschutzmaterialien

(1)P Die Eigenschaften und die Leistungsfähigkeit von Brandschutzmaterialien müssen unter den Versuchsbedingungen nach CEN/TS 13381-1, ENV 13381-2, ENV 13381-5 und ENV 13381-6 nachgewiesen werden.

3.4 Rohdichte

(1)P Die Rohdichte von Stahl ρ_a ist als unabhängig von der Stahltemperatur zu betrachten. Folgender Wert ist anzunehmen:

$$\rho_a = 7.850$$
 kg/m³ (3.10)

(2) Bezüglich der statischen Belastung darf die Rohdichte von Beton ρ_c als unabhängig von der Betontemperatur betrachtet werden. Für die thermische Analyse darf der Verlauf von ρ_c als Funktion der Temperatur nach EN 1992-1-2, 3.3.2(3) angewendet werden.

ANMERKUNG Der Verlauf von ho_c als Funktion der Temperatur darf wie folgt angenähert werden:

$$\rho_{c\theta} = 2354 - 2347 \left(\theta_{c}/100\right) \tag{3.11}$$

(3) Für unbewehrten Normalbeton (NC) darf der folgende Wert angesetzt werden:

$$\rho_{c,NC} = 2\,300$$
 kg/m³ (3.12a)

(4)P Die Rohdichte von unbewehrtem Leichtbeton (LC), wie er dieser Norm für die Bemessung im Brandfall zugrunde liegt, muss innerhalb folgender Grenzen liegen:

$$\rho_{c,LC} = 1600 \text{ bis } 2000 \text{ kg/m}^3$$
 (3.12b)

4 Bemessungsverfahren

4.1 Einleitung

(1)P Der Nachweis des Tragverhaltens im Brandfall muss den Anforderungen nach Abschnitt 5 (Konstruktionsdetails) sowie einem der folgenden erlaubten Bemessungsverfahren genügen:

- anerkannte (klassifizierte) Bemessungswerte in Tabellenform f
 ür bestimmte Bauteile;
- vereinfachte Berechnungsverfahren für bestimmte Bauteile;
- allgemeine Berechnungsverfahren zur Simulation des Verhaltens von Gesamttragwerken (nach 2.4.4), von Teiltragwerken (nach 2.4.3) oder von Einzelbauteilen (nach 2.4.2).

ANMERKUNG Die Entscheidung, ob allgemeine Berechnungsverfahren in den einzelnen Ländern angewendet werden dürfen, ist den jeweiligen Nationalen Anhängen zu entnehmen.

- (2)P Die Anwendung von Tabellenwerten und von vereinfachten Berechnungsverfahren ist auf Einzelbauteile mit direkter Brandbeanspruchung über die volle Bauteillänge beschränkt. Dabei wird angenommen, dass die Brandbeanspruchung den Normbrandbedingungen entspricht und dass eine einheitliche Querschnittstemperaturverteilung über die Bauteillänge herrscht. Eine Extrapolation über den durch Versuche abgedeckten Bereich hinaus ist nicht zulässig.
- (3) Tabellenwerte und vereinfachte Berechnungsverfahren liegen in der Regel im Vergleich zu Versuchsergebnissen oder allgemeinen Berechnungsverfahren auf der sicheren Seite.
- (4)P Die Anwendung allgemeiner Berechnungsverfahren behandelt das Brandverhalten von Einzelbauteilen, Teiltragwerken oder Gesamttragwerken und erlaubt soweit sinnvoll den Nachweis der Interaktion zwischen direkt brandbeanspruchten und nicht brandbeanspruchten Tragwerksteilen.
- (5)P Bei allgemeinen Berechnungsverfahren müssen ingenieurmäßige Regeln in realitätstreuer Weise auf spezielle Fälle angewendet werden.
- (6)P Falls weder Tabellenwerte noch vereinfachte Berechnungsverfahren verfügbar sind, so ist der Nachweis entweder auf der Grundlage allgemeiner Berechnungsverfahren oder von Versuchsergebnissen zu führen.
- (7)P Ausnutzungsfaktoren werden definiert als Verhältnis des maßgebenden Bemessungswertes der Beanspruchung zu dem Bemessungswert der Beanspruchbarkeit:

$$\eta = \frac{E_d}{R_d} \le 1.0$$
 Ausnutzungsfaktor nach EN 1994-1-1 (4.1)

Dabei ist

 $E_{\scriptscriptstyle d}$ der Bemessungswert der Beanspruchung bei Normaltemperatur;

 R_d der Bemessungswert der Beanspruchbarkeit bei Normaltemperatur;

$$\eta_{\scriptscriptstyle fi,t} = \frac{E_{\scriptscriptstyle fi,d,t}}{R_{\scriptscriptstyle d}} \qquad \qquad \text{Ausnutzungsfaktor für die Bemessung im Brandfall;}$$

Dabei ist

 $E_{\it fids}$ der Bemessungswert der Beanspruchung im Brandfall zum Zeitpunkt $\it t.$

- (8)P Bei Gesamttragwerksberechnungen (Gesamtkonstruktionen) müssen die mechanischen Einwirkungen aus der Kombinationsregel für außergewöhnliche Bemessungssituationen nach EN 1991-1-2, 4.3 ermittelt werden.
- (9)P Bei allen Tragwerksberechnungen nach 2.4.2, 2.4.3 und 2.4.4 ist das Tragfähigkeitskriterium "R" erreicht, wenn der Bemessungswert der Beanspruchbarkeit im Brandfall $R_{fi,d,t}$ auf das Niveau des Bemessungswertes der Beanspruchung im Brandfall $E_{fi,d,t}$ abgesunken ist.
- (10) Bei der Bemessung mit Tabellenwerten nach 4.2 darf $R_{fi,d,t}$ aus $R_{fi,d,t} = \eta_{fi,t} R_d$ berechnet werden.
- (11) Vereinfachte Berechnungsverfahren für Decken und Träger dürfen auf der Grundlage bekannter Querschnittstemperaturverteilungen nach 4.3 und Werkstoffeigenschaften nach Abschnitt 3 beruhen.
- (12) Bei Decken und Trägern, für die die Temperaturverteilungen durch andere geeignete Verfahren oder durch Versuche bestimmt wurden, darf die Querschnittstragfähigkeit direkt mit den in Abschnitt 3 angegebenen Werkstoffeigenschaften berechnet werden, vorausgesetzt, Stabilitätsversagen oder andere vorzeitige Versagensformen sind ausgeschlossen.
- (13) Bei Verbundträgern ist in der Regel die Längsschubtragfähigkeit in der Deckenplatte als Funktion der Querbewehrung nach EN 1994-1-1, 6.6.6 zu ermitteln. In diesem Fall ist in der Regel die Mitwirkung des Stahlprofilbleches zu vernachlässigen, wenn die Blechtemperatur 350 °C überschreitet. Die mittragende Breite $b_{\rm eff}$ bei erhöhten Temperaturen darf wie in EN 1994-1-1, 5.4.1.2 angenommen werden.
- (14) Regel (13) gilt, wenn der Achsabstand dieser Querbewehrung nach EN 1992-1-2, Tabelle 5.8, Spalte 3 eingehalten ist.
- (15) In diesem Dokument wird für Stützen im Brandfall eine vierseitige Beflammung unterstellt. Bei Deckenträgern hingegen wird eine dreiseitige Beflammung von unten angenommen.
- (16) Bei Trägern darf in Verbindung mit Verbunddecken von einer dreiseitigen Beflammung ausgegangen werden, wenn mindestens 85 % der Oberseite des Stahlträgerobergurtes von dem Profilblech bedeckt sind.

4.2 Bemessungstabellen

4.2.1 Anwendungsgrenzen

- (1) Die folgenden Regeln beziehen sich auf die Bauteilbemessung nach 2.4.2. Sie gelten nur für Normbrandbedingungen.
- (2) Die nachfolgenden Tabellenwerte sind abhängig vom Ausnutzungsfaktor $\eta_{fi,t}$ nach 4.1 (7)P, (9)P und (10).
- (3) Der Bemessungswert der Beanspruchung im Brandfall $E_{ji,d}$, der als zeitunabhängig angenommen wird, darf nach 2.4.2 (2) ermittelt werden.
- (4)P Es ist nachzuweisen, dass $E_{fi,d,t} \leq R_{fi,d,t}$ ist.
- (5) Für die Werte der Tabellen 4.1 bis 4.7 ist lineare Interpolation für alle physikalischen Parameter zulässig.

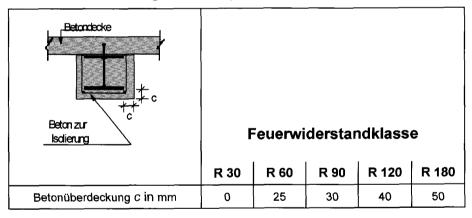
ANMERKUNG Wenn eine Klassifizierung nach dem aktuellen Stand nicht möglich ist, wird dies in den Tabellen durch "-" gekennzeichnet.

4.2.2 Verbundträger mit Kammerbeton

- (1) Verbundträger mit Kammerbeton (Bild 1.5) dürfen in Abhängigkeit von dem Ausnutzungsfaktor $\eta_{fi,t}$, der Trägerbreite b und der Zulagebewehrung $A_{\rm s}$ bezogen auf die Fläche des unteren Flansches $A_{\rm f}$ nach Tabelle 4.1 klassifiziert werden.
- (2) Die Werte der Tabelle 4.1 gelten für Einfeldträger.
- (3) Bei der Bestimmung von R_d und $R_{fi,d,t} = \eta_{fi,t} R_d$ in Verbindung mit Tabelle 4.1 sind in der Regel folgende Bedingungen einzuhalten:
- die Stegdicke e_w beträgt höchstens 1/15 der Trägerbreite b;
- die untere Flanschdicke e_f beträgt höchstens das Doppelte der Stegdicke e_w ;
- die Dicke der Betonplatte h_c beträgt mindestens 120 mm;
- die Fläche der Zulagebewehrung bezogen auf die Gesamtfläche zwischen den Flanschen $A_s / (A_c + A_s)$ beträgt höchstens 5 %;
- der Wert für $R_{\scriptscriptstyle d}$ wird auf Grundlage von EN 1994-1-1 berechnet, vorausgesetzt, dass
 - die mittragende Plattenbreite $b_{\it eff}$ den Wert 5 m nicht überschreitet,
 - die Zulagebewehrung A_s nicht in Rechnung gestellt wird.
- (4) Die Werte der Tabelle 4.1 gelten für Baustahl S355. Wird eine andere Baustahlgüte verwendet, sind die in Tabelle 4.1 für die Zulagebewehrung angegebenen Mindestwerte mit dem Verhältnis der Streckgrenze dieses Stahles zu der des S355 zu multiplizieren.
- (5) Die Werte der Tabelle 4.1 gelten bezüglich der zusätzlichen Längsbewehrung $A_{\rm s}$ für die Betonstahlgüte S500.
- (6) Die Werte der Tabellen 4.1 und 4.2 gelten für Träger, die mit Stahlbetondecken schubfest verbunden sind.
- (7) Die Werte der Tabellen 4.1 und 4.2 dürfen für Träger verwendet werden, die mit Stahlprofilblech-Verbunddecken schubfest verbunden sind, wenn mindestens 85 % der Oberseite des Stahlprofils durch das Stahlprofilblech abgedeckt sind. Wenn nicht, sind die Öffnungen in der Stahlprofilblechdecke über dem Obergurt der Träger mit Brandschutzmaterial zu schließen.
- (8) Das Material zum Verschluss der Öffnungen muss für den Brandschutz von Stahl geeignet sein (siehe ENV 13381-4 und/oder ENV 13381-5).
- (9) Zulagebewehrung muss unter Berücksichtigung der Achsabstände u_1 und u_2 von Tabelle 4.2 möglichst nah an den Unterflansch verlegt werden.

Tabelle 4.1 — Mindestquerschnittsabmessungen min b und erforderliche Verhältnisse min (A_s / A_f) von Zulagebewehrung zur Untergurtfläche für Verbundträger mit Kammerbeton

	beff hc	Anwendungsbedingungen: Decke: $h_c \ge 120 \text{ mm}$		_			
	Ac	$b_{eff} \leq 5 m$		Feuerw	iderstan	dsklasse	
	A _s h	Stahlquerschnitt: <i>b</i> / e _w ≥ 15					
	A _f = b x e _f + u ₁ + e _f	$e_{_f} / e_{_w} \le 2$					
	b 1	Verhältnis der Zulagebewehrung zur Gesamtfläche zwischen den Flanschen: $A_s/(A_c + A_s) \le 5 \%$					
			R 30	R 60	R 90	R 120	R 180
1		sabmessungen für den utzungsfaktor					
	$\eta_{_{\mathrm{fi},\mathrm{f}}}$	≤ 0,3					
	min <i>b</i> in mm und erforderliches zur Untergurtfläche des Verbundträgers <i>A</i> _s / <i>A</i> _f	Verhältnis der Zulagebewehrung				Ī	
1.1 1.2 1.3	$h \ge 0.9 \times \min b$ $h \ge 1.5 \times \min b$ $h \ge 2.0 \times \min b$		70/0,0 60/0,0 60/0,0	100/0,0 100/0,0 100/0,0	170/0,0 150/0,0 150/0,0	200/0,0 180/0,0 180/0,0	260/0,0 240/0,0 240/0,0
2	Mindestquerschnittsabmessungen für den Lastausnutzungsfaktor						
	$\eta_{_{\mathrm{fi},i}} \leq 0,5$:			
	$\min b$ in \min und erforderliches zur Untergurtfläche des Verbundträgers $A_{\rm s}$ / $A_{\rm f}$	Verhältnis der Zulagebewehrung					
2.1 2.2 2.3 2.4	$h \ge 0.9 \times \min b$ $h \ge 1.5 \times \min b$ $h \ge 2.0 \times \min b$ $h \ge 3.0 \times \min b$		80/0,0 80/0,0 70/0,0 60/0,0	170/0,0 150/0,0 120/0,0 100/0,0	250/0,4 200/0,2 180/0,2 170/0,2	270/0,5 240/0,3 220/0,3 200/0,3	- 300/0,5 280/0,3 250/0,3
3	Mindestquerschnittsabmessungen für den Lastausnutzungsfaktor						
		≤ 0,7					
	min b in mm und erforderliches zur Untergurtfläche des Verbundträgers $A_{\rm s}$ / $A_{\rm f}$	Verhältnis der Zulagebewehrung					
3.1 3.2 3.3 3.4	$h \ge 0.9 \times \min b$ $h \ge 1.5 \times \min b$ $h \ge 2.0 \times \min b$ $h \ge 3.0 \times \min b$		80/0,0 80/0,0 70/0,0 70/0,0	270/0,4 240/0,3 190/0,3 170/0,2	300/0,6 270/0,4 210/0,4 190/0,4	300/0,6 270/0,5 270/0,5	- 320/1,0 300/0,8


Tabelle 4.2 — Mindestachsabstände der Zulagebewehrung für Verbundträger mit ausbetonierten Kammern

Profil- breite	Mindest- achsabst.	Feue	rwiders	standski	lasse
b mm	<i>u</i> ₁ , <i>u</i> ₂ mm	R 60	R 90	R 120	R 180
170	U ₁ U ₂	100 45	120 60	1	1 1
200	u ₁ u ₂	80 40	100 55	120 60	-
250	u ₁ u ₂	60 35	75 50	90 60	120 60
≥ 300	u ₁ u ₂	40 25*	50 45	70 60	90 60
	breite	breite achsabst. b	breite achsabst. Feue b	breite achsabst. Feuerwiders bmm u1,u2 mm R 60 R 90 170 u1 u2 45 60 200 u1 80 100 45 u2 40 55 u1 60 75 35 250 u2 35 50 u1 40 50	breite achsabst. Feuerwiderstandski b u_1, u_2 R 60 R 90 R 120 mm u_1 100 120 - 170 u_2 45 60 - 200 u_1 80 100 120 u_2 40 55 60 250 u_1 60 75 90 u_2 35 50 60 u_1 40 50 70

(10) Wenn der umschließende Beton des Stahlträgers lediglich isolierende (keine tragende) Funktion besitzt, darf ein ausreichender Feuerwiderstand R 30 bis R 180 bei Einhaltung der Betondeckungen c nach Tabelle 4.3 angenommen werden.

ANMERKUNG Für die Feuerwiderstandsklasse R 30 ist nur der Kammerbeton erforderlich.

Tabelle 4.3 — Mindestbetondeckung c für Stahlquerschnitte mit Beton als Brandschutzbekleidung

(11) Wenn der umschließende Beton lediglich isolierende Funktion hat, dann sind in der Regel, ausgenommen bei Feuerwiderstandsklasse R 30, Betonstahlmatten nach 5.1 (6) anzuordnen.

4.2.3 Verbundstützen

4.2.3.1 Allgemeines

- (1) Die Bemessungstabellen 4.4, 4.6 und 4.7 gelten für Verbundstützen in ausgesteiften Tragwerken.
- (2) Der Lastausnutzungsfaktor $\eta_{ji,t}$ in den Tabellen 4.6 und 4.7 wurde nach 4.1 (7)P unter der Annahme einer beidseitigen gelenkigen Lagerung der Stütze für die Berechnung von R_d und unter der Voraussetzung, dass im Brandfall beide Stützenenden vollständig eingespannt sind, bestimmt. Dies ist in der Regel nach den Bildern 5.3 bis 5.6 der Fall, wenn angenommen wird, dass nur das betrachtete Stockwerk dem Brand ausgesetzt ist.

- (3) Für die Anwendung der Tabellen 4.6 und 4.7 muss bei der Berechnung von R_d die doppelte Knicklänge wie bei der Bemessung im Brandfall angesetzt werden.
- (4) Die Tabellen 4.4 bis 4.7 gelten für zentrische oder exzentrisch belastete Stützen. Bei der Berechnung des Bemessungswertes der Beanspruchbarkeit bei Normaltemperatur R_J ist die Exzentrizität zu berücksichtigen.
- (5) Die Werte der Tabellen 4.4 bis 4.7 gelten für Stützen mit einer maximalen Länge in Höhe des 30fachen der minimalen äußeren Abmessung des gewählten Querschnitts.

4.2.3.2 Verbundstützen mit vollständig einbetonierten Stahlquerschnitten

- (1) Verbundstützen mit vollständig einbetonierten Stahlquerschnitten dürfen in Abhängigkeit von den Querschnittsabmessungen $b_{\rm c}$ oder $h_{\rm c}$, der Betondeckung c des Stahlquerschnittes und des Mindestachsabstands $u_{\rm s}$ der Längsbewehrung nach Tabelle 4.4 klassifiziert werden; Tabelle 4.4 enthält zwei alternative Lösungen.
- (2) Bei Anwendung von 4.1 (10) dürfen alle Ausnutzungsfaktoren η_{fit} angesetzt werden.
- (3) Die Bewehrung hat in der Regel aus mindestens 4 Stäben mit einem Durchmesser von 12 mm zu bestehen. In jedem Fall sollte der Mindestbewehrungsgrad nach EN 1994-1-1 eingehalten werden.
- (4) Der maximale Bewehrungsgrad der Längsbewehrung muss in der Regel den Anforderungen nach EN 1994-1-1 entsprechen. Für die Bügelbewehrung wird in der Regel auf EN 1992-1-1 verwiesen.

Tabelle 4.4 — Mindestquerschnittsabmessungen min h_c und min b_c , Mindestbetonüberdeckung min c des Stahlquerschnittes und Mindestachsabstand der Bewehrungsstäbe min u_s bei Verbundstützen mit vollständig einbetoniertem Stahlquerschnitt

	Volistalitä eliibetoilieite						
	b _c u _s +		Feu	uerwider	standsk	lasse	
		R 30	R 60	R 90	R 120	R 180	R 240
1.1	Mindestabmessungen $h_{\rm c}$ und $b_{\rm c}$ in mm	150	180	220	300	350	400
1.2	Mindestbetonüberdeckung des Stahlquerschnitts <i>c</i> in mm	40	50	50	75	75	75
1.3	Mindestachsabstand der Bewehrungsstäbe $u_{ m s}$ in mm	20*	30	30	40	50	50
	oder						
2.1	Mindestabmessungen $h_{\rm c}$ und $b_{\rm c}$ in mm	-	200	250	350	400	-
2.2	Mindestbetonüberdeckung des Stahlquerschnitts <i>c</i> in mm	-	40	40	50	60	-
2.3	Mindestachsabstand der Bewehrungsstäbe $u_{ m s}$ in mm	-	20*	20*	30	40	-
*) [*) Diese Werte müssen nach EN 1992-1-1, 4.4.1.2, überprüft werden.						

(5) Wenn der umschließende Beton des Stahlquerschnittes lediglich isolierende (keine tragende) Funktion besitzt, darf ein ausreichender Feuerwiderstand R 30 bis R 180 bei Einhaltung der Betondeckungen c nach Tabelle 4.5 angenommen werden.

ANMERKUNG Für die Feuerwiderstandsklasse R 30 ist nur der Kammerbeton erforderlich.

Tabelle 4.5 — Mindestbetondeckung für Stahlquerschnitte mit Beton als Brandschutzbekleidung

Beton als Bekleidung		Feuerw	viderstand	sklasse	
	R 30	R 60	R 90	R 120	R 180
Betonüberdeckung c in mm	0	25	30	40	50

(6) Wenn der umschließende Beton lediglich isolierende Funktion hat, dann sind, mit Ausnahme der Feuerwiderstandsklasse R 30, in der Regel Betonstahlmatten nach 5.1 (6) anzuordnen.

4.2.3.3 Verbundstützen mit Kammerbeton

- (1) Verbundstützen mit Kammerbeton dürfen in Abhängigkeit vom Ausnutzungsfaktor $\eta_{\rm fi,t}$, den Querschnittsabmessungen b oder h, dem Mindestachsabstand der Längsbewehrungsstäbe $u_{\rm s}$ und dem Verhältnis von Stegdicke $e_{\rm w}$ zur Flanschdicke $e_{\rm f}$ nach Tabelle 4.6 klassifiziert werden.
- (2) Bei der Berechnung von R_d und $R_{fi,d,t}=\eta_{fi,t}$ R_d in Verbindung mit Tabelle 4.6 sind in der Regel Bewehrungsgrade A_s / A_c + A_s , die größer als 6 % oder kleiner als 1 % sind, nicht in Rechnung zu stellen.
- (3) Tabelle 4.6 darf für Baustähle S235, S275 und S355 angewendet werden.

Tabelle 4.6 — Mindestquerschnittsabmessungen, Mindestachsabstand der Bewehrung und Mindestbewehrungsgrad von Verbundstützen mit Kammerbeton

	A_c e_f A_s u_s	Feue	rwiders	tandsk	dasse
		R 30	R 60	R 90	R 120
	Mindestverhältnis von Steg- zu Flanschdicke e _w /e _f	0,5	0,5	0,5	0,5
1	Mindestquerschnittsabmessungen für den Lastausnutzungsfaktor $\eta_{\mathrm{fi,t}} \leq 0,\!28$				
1.1 1.2 1.3	Mindestabmessungen h und b in mm Mindestachsabstand der Bewehrungsstäbe $u_{\rm s}$ in mm Mindestbewehrungsgrad $A_{\rm s}/(A_{\rm c}+A_{\rm s})$ in %	160 - -	200 50 4	300 50 3	400 70 4
2	Mindestquerschnittsabmessungen für den Lastausnutzungsfaktor $\eta_{\mathrm{fi,t}} \leq 0,47$				
2.1 2.2 2.3	Mindestabmessungen h und b in mm Mindestachsabstand der Bewehrungsstäbe $u_{\rm s}$ in mm Mindestbewehrungsgrad $A_{\rm s}/(A_{\rm c}+A_{\rm s})$ in %	160 - -	300 50 4	400 70 4	- - -
3	Mindestquerschnittsabmessungen für den Lastausnutzungsfaktor $\eta_{\text{fi,t}} \leq 0,66$				
3.1 3.2 3.3	Mindestabmessungen h und b in mm Mindestachsabstand der Bewehrungsstäbe $u_{\rm s}$ in mm Mindestbewehrungsgrad $A_{\rm s}/(A_{\rm c}+A_{\rm s})$ in %	160 40 1	400 70 4	- - -	-
	RKUNG Die Werte des Lastausnutzungsfaktors $\eta_{j_{i,t}}$ wurden an das R $_{0}$ ndstützen angepasst.	echenverf	ahren von	EN 1994	-1-1 für

4.2,3.4 Verbundstützen aus betongefüllten Hohlprofilen

(1) Verbundstützen aus betongefüllten Hohlprofilen dürfen in Abhängigkeit vom Ausnutzungsfaktor $\eta_{j_{l,t}}$, der Querschnittsabmessung b, h oder d, dem Bewehrungsverhältnis $A_{\rm s}$ / $(A_{\rm c}+A_{\rm s})$ und dem Mindestachsabstand der Bewehrungsstäbe $u_{\rm s}$ nach Tabelle 4.7 klassifiziert werden.

ANMERKUNG Alternativ zu dieser Methode dürfen die Bemessungsregeln nach 5.3.2 oder 5.3.3 der EN 1992-1-2 verwendet werden, wenn das Hohlprofil vernachlässigt wird.

- (2) Bei der Berechnung von R_d und $R_{fi,d,t}=\eta_{fi,t}$ R_d in Verbindung mit Tabelle 4.7 sind folgende Regeln zu beachten:
- unabhängig von der Stahlgüte des Hohlprofilquerschnittes ist eine nominelle Streckgrenze von 235 N/mm² anzusetzen;
- die Wanddicke des Hohlprofilquerschnittes wird bis maximal 1/25 von b oder d berücksichtigt;
- Bewehrungsgrade $A_s / (A_c + A_s)$ größer als 3 % dürfen nicht angesetzt werden;
- die Betonfestigkeit wird wie bei der Bemessung unter Normaltemperatur angesetzt.
- (3) Die Werte der Tabelle 4.7 gelten für eine Betonstahlgüte S 500 bezüglich der Bewehrung A_{s} .

Tabelle 4.7 — Mindestquerschnittsabmessungen, Mindestbewehrungsgrade, Mindestachsabstand min $u_{\rm s}$ der Bewehrungsstäbe zur Profilinnenseite bei gefüllten Hohlprofilen

e) ≥ 25 oder	(d / e) ≥ 25	Fet R 30	r 60	1		sse R 180
omessungen für den A	Ausnutzungsfaktor					
grad $(A_s / (A_c + A_s))$ in		160 0	200 1,5 30	220 3,0 40	260 6,0 50	400 6,0 60
grad $(A_s / (A_c + A_s))$ in		260 0 -	260 3,0 30	400 6,0 40	450 6,0 50	500 6,0 60
grad $(A_s / (A_c + A_s))$ in	m %	260 3,0 25	450 6,0 30	550 6,0 40	-	- - -
	omessungen für den A en h und b oder d in m grad $(A_s / (A_c + A_s))$ in U_s in mm omessungen efaktor $\eta_{n,t} \le 0,47$ en h und b oder d in m grad $(A_s / (A_c + A_s))$ in U_s in mm omessungen efaktor $\eta_{n,t} \le 0,66$ en h und b oder d in m	$(a \mid e) \ge 25$ oder $(a \mid e) \ge 25$ omessungen für den Ausnutzungsfaktor en $a \mid b$ und $a \mid b$ oder $a \mid d$ in mm grad $(a \mid A_s \mid (A_c + A_s))$ in % $a \mid a \mid d$ omessungen faktor $a \mid d \mid d$ oder $a \mid d$ in mm grad $a \mid d \mid d$ oder $a \mid d$ in mm omessungen faktor $a \mid d \mid d$ in mm omessungen faktor $a \mid d \mid d$ in mm omessungen faktor $a \mid d \mid d$ in mm omessungen faktor $a \mid d \mid d \mid d$ in mm of grad $a \mid d \mid d \mid d \mid d$ oder $a \mid d \mid d \mid d \mid d \mid d$ oder $a \mid d \mid d \mid d \mid d \mid d \mid d$ oder $a \mid d \mid $	d $(e) \ge 25$ oder $(d \mid e) \ge 25$ R 30 Domessungen für den Ausnutzungsfaktor en h und b oder d in mm grad $(A_s \mid (A_c + A_s))$ in % Domessungen offaktor $\eta_{n,t} \le 0,47$ en h und b oder d in mm grad $(A_s \mid (A_c + A_s))$ in % $(A_s \mid A_s)$ in % $(A_s \mid A_s)$ in % Domessungen offaktor $(A_s \mid A_s)$ in %	d $(e) \ge 25$ oder $(d \mid e) \ge 25$ R 30 R 60 The mean $(a \mid e) \ge 25$ R 30 R 60 The m	(e) ≥ 25 oder (d/e) ≥ 25 (e) ≥ 26 (e) ≥ 20	d d d d d d d d d d d d d d d d d d d

ANMERKUNG Die Werte des Lastausnutzungsfaktors $\eta_{fi,t}$ wurden an das Rechenverfahren von EN 1994-1-1 für Verbundstützen angepasst.

4.3 Vereinfachte Berechnungsverfahren

4.3.1 Allgemeine Regeln für Verbunddecken und Verbundträger

- (1) Die folgenden Regeln gelten für eine Bauteilberechnung nach 2.4.2. Sie sind nur für eine Brandbeanspruchung nach der Einheits-Temperaturzeitkurve gültig.
- (2) Im Folgenden werden gemeinsame Regeln für Verbunddecken und Verbundträger angegeben. Zusätzlich sind in 4.3.2 und 4.3.3 Regeln für Verbunddecken und in 4.3.4 Regeln für Verbundträger angegeben.
- (3)P Bei Verbundträgern, deren effektive Querschnitte der Klasse 1 oder der Klasse 2 (siehe EN 1993-1-1) zugeordnet sind, oder bei Verbunddecken ist der Bemessungswert der Biegemomententragfähigkeit nach der Plastizitätstheorie zu bestimmen.
- (4) Die plastische Nulllinie einer Verbunddecke oder eines Verbundträgers darf wie folgt bestimmt werden:

$$\sum_{i=1}^{n} A_i k_{y,\theta,i} \left(\frac{f_{y,i}}{\gamma_{M,fi,a}} \right) + \alpha_{slab} \sum_{j=1}^{m} A_j k_{c,\theta,j} \left(\frac{f_{c,j}}{\gamma_{M,fi,c}} \right) = 0$$

$$(4.2)$$

Dabei ist

- α_{slab} der Koeffizient, der bei der Bemessung von Decken die Annahme eines rechteckigen Spannungsblockes berücksichtigt, α_{slab} = 0,85;
- $f_{y,i}$ die nominelle Fließgrenze f_y für die Teilfläche A_i aus Stahl; sie wird auf der Druckseite der plastischen Nulllinie positiv und auf der Zugseite negativ angenommen;
- $f_{c,j}$ der Bemessungswert der Druckfestigkeit der Teilfläche A_j aus Beton bei 20 °C. Zugbeanspruchte Teilflächen aus Beton werden vernachlässigt;
- $k_{v,\theta,i}$ oder $k_{c,\theta,i}$ nach Tabelle 3.2 oder Tabelle 3.3.
- (5) Der Bemessungswert der Momententragfähigkeit $\,M_{_{fi,t,Rd}}\,$ darf wie folgt bestimmt werden:

$$M_{f,t,Rd} = \sum_{i=1}^{n} A_{i} z_{i} k_{y,\theta,i} \left(\frac{f_{y,i}}{\gamma_{M,fi}} \right) + \alpha_{slab} \sum_{j=1}^{m} A_{j} z_{j} k_{c,\theta,j} \left(\frac{f_{c,j}}{\gamma_{M,fi,c}} \right)$$
(4.3)

Dabei ist

- z_i, z_j Abstände der Schwerpunkte der Teilflächen A_i oder A_i zur plastischen Nulllinie.
- (6) Für durchlaufende Platten und Träger gelten die Regeln nach EN 1992-1-2 und EN 1994-1-1, um die erforderliche Rotationskapazität sicherzustellen.

4.3.2 Ungeschützte Verbunddecken

- (1) Typische Verbunddecken mit Stahl-Profilblechen mit oder ohne Bewehrung sind in Bild 1.1 dargestellt.
- (2) Die folgenden Regeln gelten für die Bestimmung der Feuerwiderstandsklasse einfeldriger und durchlaufender Verbunddecken mit bewehrten Stahlprofilblechen, wie unten beschrieben, wenn sie von unten durch die Einheits-Temperaturzeitkurve beflammt werden.

(3) Dieses Verfahren gilt nur für direkt beflammte ungeschützte Stahlprofilbleche und Verbunddecken ohne Wärmedämmung zwischen Decke und Estrich (siehe Bilder 4.1 und 4.2).

ANMERKUNG Anhang D, D.4, enthält ein Verfahren zu Berechnung der effektiven Dicke $h_{\!\scriptscriptstyle eff}$.

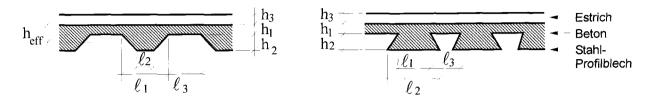


Bild 4.1 — Symbole für Trapezbleche

Bild 4.2 — Symbole für hinterschnittene Profile

- (4) Mögliche Auswirkungen von Längsdehnungsbehinderungen auf die Feuerwiderstandsdauer sind in den nachfolgenden Regeln nicht berücksichtigt.
- (5) Die Feuerwiderstandsdauer von Verbunddecken mit Stahlprofilblechen mit oder ohne zusätzliche Bewehrung beträgt beim Nachweis des Tragfähigkeitskriteriums "R" nach 2.1.2(1)P mindestens 30 Minuten, wenn sie EN 1994-1-1 genügen. Für den Nachweis des Wärmedämm-Kriteriums "I" gelten die folgenden Abschnitte.
- (6) Für Verbunddecken wird angenommen, dass das Raumabschluss-Kriterium "E" erfüllt ist.

ANMERKUNG 1 D.1, enthält ein Verfahren für die Berechnung der Feuerwiderstandsklasse unter Beachtung des Wärmedämmkriteriums "I".

ANMERKUNG 2 D.2 und D.3, enthalten Verfahren für die Berechnung des Feuerwiderstandes in Bezug auf das mechanische Widerstandskriterium "R" und bezüglich der positiven und negativen Momententragfähigkeit.

(7) Leichtbeton nach 3.3.3 und 3.4 darf verwendet werden.

4.3.3 Geschützte Verbunddecken

- (1) Der Feuerwiderstand von Verbunddecken darf durch Applikation von Schutzsystemen an das Stahlprofilblech erhöht werden; damit wird die Wärmeübertragung zur Verbunddecke vermindert.
- (2) Die Eigenschaften der für Verbunddecken eingesetzten Schutzsysteme sind in der Regel entsprechend den nachfolgenden Vorschriften nachzuweisen:
- CEN/TS 13381-1 f
 ür Unterdecken und
- ENV 13381-5 für Bekleidungsmaterialien.
- (3) Das Wärmedämm-Kriterium "I" wird nachgewiesen, indem die äquivalente Betondicke des Schutzsystems (siehe ENV 13381-5) von dem Mindestwert der wirksamen Deckendicke $h_{\rm eff}$ abgezogen wird.
- (4) Das Traglastkriterium "R" ist erfüllt, solange die Temperatur des von unten durch Normbrand beflammten Stahlprofilbleches der Verbunddecke kleiner oder gleich 350 °C ist.

ANMERKUNG Bezüglich des Traglastkriteriums "R" ist die Feuerwiderstandsklasse mindestens 30 min (siehe 4.3.2 (5)).

4.3.4 Verbundträger

4.3.4.1 Tragverhalten

4.3.4.1.1 Allgemeines

(1)P Bei Verbundträgern muss Folgendes nachgewiesen werden:

- Biegemomententragfähigkeit des kritischen Querschnitts nach EN 1994-1-1, 6.1.1(P) nach 4.3.4.1.2;
- Querkrafttragfähigkeit, nach 4.3.4.1.3;
- Längsschubtragfähigkeit, nach 4.3.4.1.5.

ANMERKUNG EN 1994-1-1, 6.1.1 (4)P, enthält Hinweise für die kritischen Querschnitte.

- (2) Liegen bezüglich der Verbundwirkung im Brandfall für eine Decke mit darunter liegendem Stahlträger Versuchsergebnisse vor (siehe EN 1365-3), so darf für Träger, die bei Normaltemperatur ohne Verbund betrachtet werden, im Brandfall eine Verbundwirkung angenommen werden.
- (3) Die Temperaturverteilung über den Querschnitt darf aus Versuchen, mit allgemeinen Berechnungsverfahren (4.4.2) oder, für Verbundträger ohne Kammerbeton, nach dem vereinfachten Bemessungsverfahren nach 4.3.4.2.2 bestimmt werden.

4.3.4.1.2 Biegemomententragfähigkeit von Trägerquerschnitten

- (1) Der Bemessungswert der Biegemomententragfähigkeit darf für alle Querschnittsklassen, ausgenommen Querschnittsklasse 4, nach der Plastizitätstheorie bestimmt werden.
- (2) Bei gelenkig gelagerten Einfeldträgern darf der Stahlflansch unter Druck unabhängig von seiner Klassenzuordnung als Klasse 1 behandelt werden, vorausgesetzt, er ist mit Dübeln nach EN 1994-1-1, 6.6.5.5 mit der Betondecke verbunden.
- (3) Für Querschnitte der Klasse 4 gilt EN 1993-1-2, 4.2.3.6.

4.3.4.1.3 Querkrafttragfähigkeit des Trägerquerschnitts

(1)P Die Querkrafttragfähigkeit ist aus der Tragfähigkeit des Baustahlquerschnitts zu bestimmen (siehe EN 1993-1-2, 4.2.3.3 (6) und 4.2.3.4 (4)), es sei denn, eine Mitwirkung der Betonteile des Trägers an der Querkrafttragfähigkeit wurde durch Versuche nachgewiesen.

ANMERKUNG E.4 enthält ein Verfahren für die Berechnung der Querkrafttragfähigkeit von Baustahlguerschnitten.

(2) Unter der Annahme, dass der Steg bei Normaltemperatur die gesamte Querkraft aufnimmt, ist für gelenkig gelagerte Einfeldträger mit Kammerbeton kein Nachweis erforderlich.

4.3.4.1.4 Gleichzeitige Beanspruchung aus Biegung und Querkraft

- (1) Für kammerbetonierte Träger, beansprucht durch ein Stützmoment, muss der Steg auf seine Querkrafttragfähigkeit nachgewiesen werden, auch wenn dieser bei der Biegemomententragfähigkeit nicht berücksichtigt wird.
- ANMERKUNG 1 F.2 (7), enthält ein Verfahren für kammerbetonierte Verbundträger unter negativer Biegemomentenbeanspruchung.
- ANMERKUNG 2 E.2 und E.4, enthalten ein Verfahren für Verbundträger mit Stahlträgern ohne Kammerbeton.

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

4.3.4.1.5 Längsschubtragfähigkeit

- (1)P Die gesamte Bemessungslängsschubkraft ist konsistent mit der Bemessungsbiegemomententragfähigkeit unter Berücksichtigung der Differenz zwischen der Normalkraft im Beton und im Baustahl über eine kritische Länge zu bestimmen.
- (2) Bei einer Bemessung im Brandfall mit teilweiser Verdübelung ist in der Regel die Veränderung der Längsschubkräfte infolge der Erwärmung zu berücksichtigen.
- (3) Die Bemessungslängsschubkraft über eine kritische Länge im Bereich positiver Biegung ergibt sich aus dem kleineren Wert der beiden folgenden Gleichungen:

Aus der Druckkraft in der Decke:

$$F_c = \alpha_{slab} \sum_{j=1}^{m} A_j k_{c,\theta,j} \left(\frac{f_{c,j}}{\gamma_{M,fi,c}} \right)$$
(4.4)

oder aus der Zugkraft in dem Stahlprofil:

$$F_a = \sum_{i=1}^n A_i k_{y,\theta,i} \left(\frac{f_{y,i}}{\gamma_{M,fl,a}} \right) . \tag{4.5}$$

ANMERKUNG E.2 enthält ein Verfahren für die Berechnung des Längsschubs im Bereich von negativer Biegung.

(4)P Für die Einleitung des Längsschubes ist angemessene Querbewehrung nach EN 1994-1-1, 6.6.6.2 anzuordnen.

4.3.4.2 Verbundträger ohne Betonüberdeckung des Stahlquerschnitts

4.3.4.2.1 Allgemeines

Das folgende Nachweisverfahren für den Feuerwiderstand von Verbundträgern ohne Betonüberdeckung des Stahlquerschnitts (siehe Bild 1.2) gilt für gelenkig gelagerte Einfeldträger und Durchlaufträger.

4.3.4.2.2 Erwärmung des Querschnitts

Stahlträger

(1) Bei der Berechnung der Temperaturverteilung im Stahlquerschnitt darf der Querschnitt nach Bild 4.3 in Teilquerschnitte unterteilt werden.

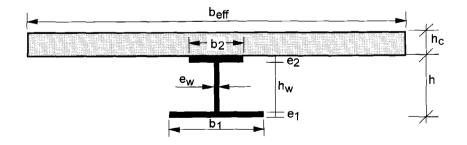


Bild 4.3 - Querschnittsteile

- (2) Es wird angenommen, dass zwischen den verschiedenen Teilen, auch zwischen dem oberen Flansch und der Betondecke, keine Wärmeleitung stattfindet.
- (3) Die Temperaturerhöhung $\Delta\theta_{a,t}$ der einzelnen Teile von **ungeschützten Stahlquerschnitten** im Zeitintervall Δt ergibt sich aus:

$$\Delta\theta_{a,t} = k_{shadow} \left(\frac{1}{c_a \rho_a}\right) \left(\frac{A_j}{V_i}\right) h_{net}^{\bullet} \Delta t$$
 [°C] (4.6)

Dabei ist

 k_{shadow} der Korrekturfaktor für den Abschattungseffekt (siehe (4));

 c_a die spezifische Wärmekapazität von Baustahl nach Regel 3.3.1 (4), J/kgK;

 ho_a die Rohdichte von Baustahl nach 3.4 (1)P, kg/m 3 ;

 A_i die beflammte Oberfläche je Längeneinheit des Stahlquerschnittsteiles i, m²/m;

 A_i/V_i der Profilfaktor des Stahlquerschnittsteiles i;

 V_i das Volumen je Längeneinheit des Stahlquerschnittsteiles i, m 3 /m;

 h_{net} nach EN 1991-1-2, 3.1, der Bemessungswert des Netto-Wärmestroms je Flächeneinheit, W/m 2 ;

$$\dot{h}_{net} = \dot{h}_{net,c} + \dot{h}_{net,r}$$
, W/m²;

$$\dot{h}_{net,c} = \alpha_c \left(\theta_t - \theta_{a,t} \right), \text{W/m}^2;$$

$$\dot{h}_{net,r} = \varepsilon_m \ \varepsilon_f \ (5,67 \ . \ 10^{-8}) [(\theta_t + 273)^4 - (\theta_{a,t} + 273)^4], \ W/m^2;$$

 ε_m nach 2.2 (2);

 ε_f die Emissivität der Flamme nach EN 1991-1-2, 3.1 (6);

 θ_t die Gastemperatur zum Zeitpunkt t, °C;

 $\theta_{a,t}$ die Stahltemperatur zum Zeitpunkt t, °C, die in jedem der Stahlquerschnittsteile gleichmäßig verteilt angenommen wird;

 Δt das Zeitintervall, s.

(4) Der Korrekturfaktor für den Abschattungseffekt darf wie folgt bestimmt werden:

$$k_{shadow} = 0.9 \left(\frac{e_1 + e_2 + 1/2 \cdot b_1 + \sqrt{h_w^2 + 1/4 \cdot (b_1 - b_2)^2}}{h_w + b_1 + 1/2 \cdot b_2 + e_1 + e_2 - e_w} \right)$$
(4.7)

Dabei sind $e_1, b_1, e_w, h_w, e_2, b_2$ Querschnittsabmessungen nach Bild 4.3.

ANMERKUNG Die oben angegebene Gleichung des Abschattungseffektes ($k_{\rm shadow}$) und seine Anwendung nach (3) ist eine Näherung, die von einer großen Zahl systematischer Berechnungen abgeleitet wurde; für detailliertere Berechnungsmodelle ist in der Regel das Konzept des Konfigurationsfaktors nach 3.1 und EN 1991-1-2, Anhang G anzuwenden.

- (5) In Regel (3) ist im Allgemeinen für Δt kein Wert größer als 5 Sekunden anzunehmen.
- (6) Die Temperaturerhöhungen $\Delta\theta_{a,t}$ der einzelnen Teile von **bekleideten Stahlquerschnitten** im Zeitintervall Δt ergeben sich aus:

$$\Delta \theta_{a,t} = \left[\left(\frac{\lambda_{p}/d_{p}}{c_{a}\rho_{a}} \right) \left(\frac{A_{p,i}}{V_{i}} \right) \left(\frac{1}{1+w/3} \right) \left(\theta_{t} - \theta_{a,t} \right) \Delta t \right] - \left[\left(e^{w/10} - 1 \right) \Delta \theta_{t} \right]$$
(4.8)

mit

$$w = \left(\frac{c_p \rho_p}{c_a \rho_a}\right) d_p \left(\frac{A_{p,i}}{V_i}\right)$$

Dabei ist

- λ_n die Wärmeleitfähigkeit des Brandschutzmaterials nach 3.3.4(1)P, W/mK;
- d_n die Dicke des Brandschutzmaterials, m;
- $A_{p,i}$ die innere Abwicklung des Brandschutzmaterials je Längeneinheit des Stahlguerschnittsteiles i, m^2/m ;
- $A_{\rm min}$ die Wärmeleitfähigkeit des Brandschutzmaterials nach 3.3.4(1)P, W/mK;
- $c_{\rm p}$ die spezifische Wärmekapazität des Brandschutzmaterials nach 3.3.4 (1)P, J/kgK;
- ρ_{p} die Rohdichte des Brandschutzmaterials, kg/m³;
- θ_t die Gastemperatur zum Zeitpunkt t, °C;
- $\Delta\theta_{t}$ der Anstieg der Gastemperatur im Zeitintervall Δt , in °C.
- (7) Negative Temperaturerhöhungen $\varDelta heta_{a,t}$, die sich aus (6) ergeben, sind in der Regel zu null zu setzen.

- (8) In (6) ist in der Regel für Δt höchstens 30 Sekunden anzunehmen.
- (9) Für ungeschützte Querschnitte und Querschnitte mit profilfolgender Ummantelung ist in der Regel der Profilfaktor A_i/V_i bzw. $A_{n,i}/V_i$ wie folgt zu berechnen:
- für den unteren Flansch:

$$A_i/V_i \text{ oder } A_{n,i}/V_i = 2(b_i + e_i)/b_i e_i$$
 (4.9a)

 für den oberen Flansch, wenn mindestens 85 % des oberen Flansches des Stahlprofils in Kontakt mit der Betondecke stehen, oder wenn jeder Hohlraum zwischen dem oberen Flansch und dem Stahl-Profilblech mit nichtbrennbarem Material verfüllt wird:

$$A_i/V_i$$
 oder $A_{ij}/V_j = (b_2 + 2e_2)/b_2 e_2$ (4.9b)

— für den oberen Flansch, wenn weniger als 85 % des oberen Flansches des Stahlprofils in Kontakt mit dem Stahl-Profilblech stehen:

$$A_i/V_i \text{ oder } A_{p,i}/V_i = 2(b_2 + e_2)/b_2 e_2$$
 (4.9c)

- (10) Wenn die Trägerhöhe *h* 500 mm nicht überschreitet, darf für die Stegtemperatur die Temperatur des unteren Flansches angenommen werden.
- (11) Für Querschnitte mit kastenförmiger Ummantelung darf eine einheitliche Temperatur über die Höhe des Profils angenommen werden, wenn (6) in Verbindung mit A_{ν}/V angewendet wird.

Dabei ist

- A_p die innere Abwicklung der kastenförmigen Ummantelung je Längeneinheit des Stahlquerschnitts, m²/m;
- V das Volumen des gesamten Stahlquerschnittes je Längeneinheit, m³/m.
- (12) Alternativ zu (6) dürfen Temperaturen in Stahlquerschnitten für gegebene Branddauern aus Bemessungsdiagrammen entnommen werden, die in Übereinstimmung mit EN 13381-4 und EN 13381-5 erstellt wurden.
- (13) Der Brandschutz von Stahlträgern mit oben liegender Betondecke darf durch Anordnung eines Wärmeschildes erzielt werden, wobei der Temperaturanstieg nach EN 1993-1-2, 4.2.5.3 berechnet werden darf.

Beton- oder Verbunddecken

- (14) Die folgenden Regeln (15) und (16) dürfen für Betondecken oder Verbunddecken mit hinterschnittenen oder trapezförmigen Stahlprofilblechen angewendet werden.
- (15) Die Temperaturverteilung darf über die mittragende Breite b_{eff} der Betonplatte gleichmäßig angenommen werden.

ANMERKUNG Zur Bestimmung der Temperaturverteilung über die Dicke der Betondecke wird ein Verfahren in Anhang D, Tabelle D.5 angegeben.

(16) Bei der mechanischen Analyse darf angenommen werden, dass bei Betontemperaturen unter 250 °C keine Festigkeitsminderung des Betons zu berücksichtigen ist.

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

4.3.4.2.3 Tragverhalten – Verfahren der kritischen Temperatur

- (1) Bei Anwendung des folgenden Verfahrens der kritischen Temperatur wird angenommen, dass die Temperaturverteilung im Stahlquerschnitt uniform ist.
- (2)P Die Methode gilt für gelenkig gelagerte Einfeldträger unter ausschließlich positiver Momentenbeanspruchung mit symmetrischen Querschnitten von maximal 500 mm Höhe und mit Plattendicken h_c von mindestens 120 mm.
- (3) Die kritische Temperatur θ_{cr} darf nach folgender Gleichung aus dem Lastausnutzungsgrad $\eta_{fi,t}$ für den Verbundquerschnitt und aus dem von der Stahltemperatur abhängigen maximalen Spannungsniveau für Baustahl $f_{av,\theta cr}$ ermittelt werden:
- für R 30

0,9
$$\eta_{fi,t} = f_{ay,\theta cr}/f_{ay}$$
 (4.10a)

in allen anderen Fällen

1,0
$$\eta_{fi,t} = f_{av,\theta cr}/f_{av}$$
 (4.10b)

mit

$$\eta_{fit}=E_{fi.d.t}/R_d$$
 und $E_{fi.d.t}=\eta_{fi}$ E_d nach 4.1 (7)P und 2.4.2 (3).

(4) Die Temperaturerhöhung im Stahlquerschnitt darf nach 4.3.4.2.2 (3) oder (6) mit dem Profilfaktor A_i/V_i oder A_{p_i}/V_i für den unteren Flansch des Stahlquerschnittes bestimmt werden.

4.3.4.2.4 Tragverhalten – Verfahren der Momententragfähigkeit

- (1) Alternativ zu 4.3.4.2.3 darf die Momententragfähigkeit nach der Plastizitätstheorie unter Berücksichtigung temperaturabhängiger Werkstoffeigenschaften (siehe 4.3.4.1.2) berechnet werden.
- (2) Die positive und negative Momententragfähigkeit darf unter der Berücksichtigung des Verdübelungsgrades bestimmt werden.

ANMERKUNG Anhang E enthält ein Verfahren für die Berechnung von positiven und negativen Momententragfähigkeiten.

4.3.4.2.5 Nachweis der Dübeltragfähigkeit

(1) Der Bemessungswert der Dübeltragfähigkeit geschweißter Kopfbolzendübel im Brandfall ist sowohl für Beton- als auch für Verbunddecken nach EN 1994-1-1 zu ermitteln, jedoch ist der Teilsicherheitsbeiwert γ_{ν} durch $\gamma_{M, j, \nu}$ zu ersetzen; maßgebend ist der geringere der folgenden Werte:

$$P_{fi,Rd} = 0.8 \cdot k_{u,\theta} \cdot P_{Rd}$$
 mit P_{Rd} nach EN 1994-1-1, Gleichung 6.18 oder (4.11a)

$$P_{f_{l}Rd} = k_{c,\theta} \cdot P_{Rd}$$
 mit P_{Rd} nach EN 1994-1-1, Gleichung 6.19. (4.11b)

Dabei sind die Werte für $k_{u,\theta}$ und $k_{c,\theta}$ Tabelle 3.2 bzw. 3.3 zu entnehmen.

(2) Die Temperatur θ_v [°C] des Kopfbolzendübels darf zu 80 % und die Betontemperatur θ_c zu 40 % der Stahltemperatur des oberen Flansches vom Stahlquerschnitt angenommen werden.

4.3.4.3 Verbundträger mit kammerbetonierten Stahlträgern

4.3.4.3.1 Allgemeines

- (1) Die Biegemomententragfähigkeit von kammerbetonierten Verbundträgern darf nach 4.3.4.1.2 oder alternativ nach dem folgenden Verfahren bemessen werden.
- (2) Der folgende Nachweis des Feuerwiderstandes von Verbundträgern mit kammerbetonierten Stahlträgern nach Bild 1.5 gilt für Einfeld- und Durchlaufträger sowie für Kragarmbereiche.
- (3) Die folgenden Regeln gelten für Verbundträger mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve von unten.
- (4)P Die Auswirkung der Temperatur auf die Materialeigenschaften wird entweder durch eine Verkleinerung der Abmessungen einzelner Querschnittsteile oder durch die Multiplikation der charakteristischen Materialeigenschaft mit einem Reduktionsfaktor berücksichtigt.

ANMERKUNG Anhang F enthält Verfahren für die Berechnung der Reduktionsfaktoren.

(5)P Es wird angenommen, dass die Tragfähigkeit der Dübel, die auf dem oberen Flansch im Bereich der wirksamen Flanschbreite angeordnet sind, nicht reduziert wird.

ANMERKUNG F.1 enthält ein Verfahren zur Bestimmung der wirksamen Flanschbreite.

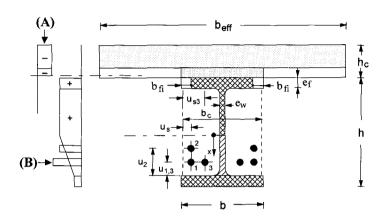

- (6) Diese Methode darf für die Klassifizierung von Verbundträgern in die Feuerwiderstandsklassen R 30, R 60, R 90, R 120 oder R 180 angewendet werden.
- (7) Diese Methode gilt in Verbindung mit Verbunddecken mit
- Trapezprofilblechen mit Wärmedämmmaterial in den Hohlräumen über dem Obergurt;
- hinterschnittenen Stahlprofilblechen; oder
- falls 4.1(16) erfüllt ist.
- (8) Bezüglich der Deckendicken h_c (siehe Bild 4.4) sind in der Regel die Mindestdicken der Tabelle 4.8 einzuhalten. Die Tabelle gilt für Beton- und Verbunddecken.

Tabelle 4.8 — Mindestdicke der Decke

Feuerwiderstandsklasse	Mindestdicke der Decke h _c mm
R 30	60
R 60	80
R 90	100
R 120	120
R 180	150

4.3.4.3.2 Tragverhalten


- (1) Bei gelenkig gelagerten Einfeldträgern ist in der Regel das maximale positive Moment infolge äußerer Last der positiven Momententragfähigkeit nach 4.3.4.3.3 gegenüberzustellen.
- (2) Für die Berechnung der positiven Momententragfähigkeit $M_{_{fl,Rd^+}}$ darf Bild 4.4 berücksichtigt werden.

ANMERKUNG (A) Beispiel für die Spannungsverteilung im Beton (B) Beispiel für die Spannungsverteilung im Stahl

Bild 4.4 — Querschnittsteile für die Berechnung der positiven Biegemomententragfähigkeit

- (3)P Für Felder von Durchlaufträgern müssen die positive Momententragfähigkeit an jedem kritischen Querschnitt und die negative Momententragfähigkeit an jedem Auflager nach 4.3.4.3.3 und 4.3.4.3.4 berechnet werden.
- (4) Für die Berechnung der negativen Momententragfähigkeit M_{fi,Rd^-} darf Bild 4.5 berücksichtigt werden.
- (5) Bei der Berechnung der Momententragfähigkeit für die unterschiedlichen Feuerwiderstandsklassen dürfen die folgenden mechanischen Werkstoffkennwerte angenommen werden:
- für Stahlquerschnitte: die Streckgrenze f_{ay} , ggf. reduziert;
- für Bewehrungsstäbe: die reduzierte Streckgrenze $k_r f_{ry}$ oder $k_s f_{sy}$;
- für Beton: die Zylinder-Druckfestigkeit f_c .

ANMERKUNG (A) Beispiel für die Spannungsverteilung im Beton (B) Beispiel für die Spannungsverteilung im Stahl

Bild 4.5 — Querschnittsteile für die Berechnung der negativen Biegemomententragfähigkeit

- (6)P Die Bemessungswerte der mechanischen Werkstoffkenngrößen in (5) werden unter Anwendung der Teilsicherheitsbeiwerte nach 2.3 (1)P ermittelt.
- (7) Träger, die bei der Bemessung für Normaltemperatur als gelenkig gelagerte Einfeldträger betrachtet werden, dürfen im Brandfall als Durchlaufträger angesehen werden, wenn 5.4.1 (5) erfüllt ist.

4.3.4.3.3 Positive Biegemomententragfähigkeit M_{fi.Rd}+

- (1) Die Breite $b_{\it eff}$ der Betondecke hat in der Regel mit der nach EN 1994-1-1, 5.4.1.2 angenommenen mittragenden Breite übereinzustimmen.
- (2) Bei der Berechnung der positiven Biegemomententragfähigkeit sind in der Regel der gedrückte Deckenbeton, der obere Stahlflansch, der Stahlsteg, der untere Stahlflansch und die Bewehrungsstäbe zu berücksichtigen. Für jeden Querschnittsteil beschreibt eine entsprechende Regel die Auswirkungen der Temperatur. Der zugbeanspruchte Deckenbeton und der Kammerbeton sind in der Regel zu vernachlässigen (siehe Bild 4.4).
- (3) Auf Grundlage der maßgebenden Gleichgewichtsbedingungen und auf Grundlage der Plastizitätstheorie darf die neutrale Achse bestimmt und die positive Momententragfähigkeit berechnet werden.

4.3.4.3.4 Negative Biegemomententragfähigkeit M_{fi,Rd} -

- (1) Die mittragende Breite der Betondecke wird auf die dreifache Breite des Stahlquerschnittes vermindert (siehe Bild 4.5). Die mittragende Breite bestimmt die anrechenbaren Bewehrungsstäbe.
- (2) Bei der Berechnung der negativen Biegemomententragfähigkeit sind in der Regel die Bewehrungsstäbe in der Betondecke, der obere Stahlflansch ausgenommen es gilt (4) und der gedrückte Kammerbeton zu berücksichtigen. Für jeden Querschnittsteil beschreibt eine entsprechende Regel die Auswirkungen der Temperatur. Der zugbeanspruchte Deckenbeton, der Steg und der untere Stahlflansch sind in der Regel zu vernachlässigen.

ANMERKUNG F.2 enthält ein Verfahren für die Berechnung der Querkrafttragfähigkeit des Steges.

- (3) Die Bewehrungsstäbe im Kammerbeton dürfen auf Druck mitwirken und bei der Berechnung der negativen Momententragfähigkeit angesetzt werden, wenn die zugehörigen Bügel die betreffenden Anforderungen zur Sicherung der Bewehrungsstäbe gegen örtliches Ausknicken nach EN 1992-1-1 erfüllen und wenn entweder sowohl Stahlquerschnitt als auch Bewehrungsstäbe am Auflager durchlaufen oder 5.4.1 (5) gilt.
- (4) Bei gelenkig gelagerten Einfeldträgern nach 5.4.1 (5) ist in der Regel der obere Flansch, wenn er zugbeansprucht ist, nicht in Rechnung zu stellen.
- (5) Auf Grundlage der maßgebenden Gleichgewichtsbedingungen und auf Grundlage der Plastizitätstheorie darf die neutrale Achse bestimmt und die negative Momententragfähigkeit berechnet werden.
- (6)P Für die Kombination positiver und negativer Momente gelten die Verfahren der Plastizitätstheorie, wenn sich plastische Gelenke über der Stütze ausbilden.
- (7) Bei Verbundträgern mit kammerbetonierten Stahlträgern darf ein Biegedrillknickversagen im Brandfall ausgeschlossen werden.

4.3.4.4 Stahlträger mit Kammerbeton

(1) Die Regeln nach 4.3.4.3 dürfen auf kammerbetonierte Stahlträger unterhalb von Betondecken ohne Schubverbindung nach Bild 1.3 angewendet werden, wenn die Tragfähigkeit der bewehrten Betondecke nicht angesetzt wird.

4.3.5 Verbundstützen

4.3.5.1 Tragverhalten

(1)P Die nachfolgend beschriebenen vereinfachten Berechnungsverfahren dürfen nur auf Stützen in ausgesteiften Tragwerken angewendet werden.

ANMERKUNG Der bezogene Schlankheitsgrad λ wird in jedem Fall durch EN 1994-1-1, 6.7.3.1 (1), für die Bemessung bei normaler Temperatur auf einen Maximalwert von 2 begrenzt.

(2) In vereinfachten Berechnungsverfahren ist der Bemessungswert der Grenznormalkraft von Verbundstützen unter zentrischem Druck im Brandfall in der Regel wie folgt zu ermitteln:

$$N_{fl,Rd} = \chi N_{fl,pl,Rd}$$
 (4.12)

Dabei ist

 χ der Reduktionsfaktor nach der Knickspannungskurve c nach EN 1993-1-1, 6.3.1 in Abhängigkeit vom bezogenen Schlankheitsgrad $\overline{\lambda}_{\theta}$;

 $N_{{\scriptscriptstyle fi,pl,Rd}}$ Bemessungswert der plastischen Grenznormalkraft im Brandfall.

- (3) Verbundstützenquerschnitte dürfen in mehrere Teile untergliedert werden. Diese werden durch die Indizes "a" für das Stahlprofil, "s" für die Bewehrungsstäbe und "c" für den Beton gekennzeichnet.
- (4) Der Bemessungswert der plastischen Grenznormalkraft im Brandfall ist gegeben durch:

$$N_{fi,pl,Rd} = \sum_{j} (A_{a,\theta} f_{ay,\theta}) / \gamma_{M,fi,a} + \sum_{k} (A_{s,\theta} f_{sy,\theta}) / \gamma_{M,fi,s} + \sum_{m} (A_{c,\theta} f_{c,\theta}) / \gamma_{M,fi,c}$$
(4.13)

Dabei ist

(5) Die wirksame Biegesteifigkeit wird berechnet nach

$$(EI)_{fi,eff} = \sum_{j} \left(\varphi_{a,\theta} E_{a,\theta} I_{a,\theta} \right) + \sum_{k} \left(\varphi_{s,\theta} E_{s,\theta} I_{s,\theta} \right) + \sum_{m} \left(\varphi_{c,\theta} E_{c,sec,\theta} I_{c,\theta} \right)$$
(4.14)

Dabei ist

 $I_{i\theta}$ das Trägheitsmoment des reduzierten Querschnittsteiles i um die schwache oder starke Achse;

 $arphi_{i, heta}$ der Reduktionskoeffizient zur Erfassung temperaturbedingter Zwängungsspannungen;

 $E_{c,sec,\theta}$ der charakteristische Wert des Sekantenmoduls von Beton im Brandfall; gegeben durch $f_{c,\theta}$ dividiert durch $\varepsilon_{cu,\theta}$; abhängig von der Temperatur θ (siehe Bild 3.2).

ANMERKUNG G.6 enthält ein Verfahren für die Berechnung der Reduktionsfaktoren für kammerbetonierte Stahlprofile.

(6) Die Euler-Knicklast oder kritische Normalkraft im Brandfall ist:

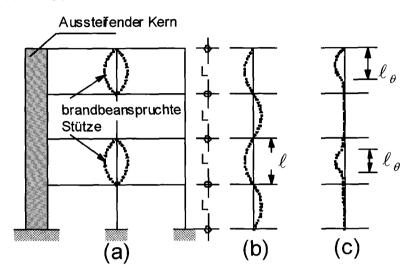
$$N_{fl,cr} = \pi^2 (EI)_{fl,eff} / \ell_\theta^2$$
 (4.15)

Dabei ist

 ℓ_A die Knicklänge der Stütze im Brandfall.

(7) Der bezogene Schlankheitsgrad ist gegeben durch:

$$\overline{\lambda}_{\theta} = \sqrt{N_{fl,pl,R}/N_{fl,cr}} \tag{4.16}$$


Dabei ist

 $N_{fl,pl,R}$ der Wert $N_{fl,pl,Rd}$ nach (4) mit den Teilsicherheitsbeiwerten $\gamma_{M,fl,a}$, $\gamma_{M,fl,s}$ und $\gamma_{M,fl,c}$ gleich 1.0.

- (8) Zur Bestimmung der Knicklänge $\ell_{\, heta}$ der Stützen gelten die Regeln von EN 1994-1-1 mit folgender Ausnahme.
- (9) Stützen in einem betrachteten Stockwerk, die vollständig an die darüber und darunter liegenden Stützen angeschlossen sind, dürfen in diesen Verbindungen als eingespannt angesehen werden, wenn die Feuerwiderstandsklassen der raumabschließenden Bauteile, die die Stockwerke trennen, mindestens gleich der Feuerwiderstandsklasse der Stützen sind.
- (10) Im Falle von Rahmentragwerken in Verbundbauweise, bei denen jedes Stockwerk als ein Brandabschnitt mit ausreichendem Feuerwiderstand angesehen wird, entspricht die Knicklänge einer Stütze $\ell_{\,\theta}$ eines brandbeanspruchten mittleren Stockwerks der Länge $L_{\rm ei}$. Für eine Stütze eines brandbeanspruchten obersten Stockwerks entspricht die Knicklänge $\ell_{\,\theta}$ im Brandfall der Länge $L_{\rm ei}$ (siehe Bild 4.6). Für eine Stütze eines brandbeanspruchten untersten Stockwerks variiert die Knicklänge $\ell_{\,\theta}$ im Brandfall in Abhängigkeit von dem Einspanngrad der Stütze in das Stützenfundament zwischen $L_{\rm ei}$ und $L_{\rm et}$.

ANMERKUNG 1 Werte für $L_{\rm ei}$ und $L_{\rm et}$ dürfen in dem Nationalen Anhang definiert werden. Die empfohlenen Werte sind der 0,5fache bzw. 0,7fache Wert der Systemlänge L.

ANMERKUNG 2 Für die Bestimmung der Knicklänge darf sowohl auf EN 1992-1-2, 5.3.2 (2) und 5.3.3 (3), als auch auf EN 1993-1-2, 4.2.3.2 (4), Bezug genommen werden.

- a) Schnitt durch das Gebäude
- b) Knickfigur bei Raumtemperatur
- c) Knickfigur im Brandfall

Bild 4.6 — Tragverhalten von Stützen in ausgesteiften Rahmentragwerken

(11) Die folgenden Regeln gelten für Verbundstützen mit allseitiger Beflammung nach der Einheits-Temperaturzeitkurve.

4.3.5.2 Stahlguerschnitte mit Kammerbeton

- (1) Der Feuerwiderstand von Stützen mit kammerbetonierten Stahlquerschnitten nach Bild 1.7 darf durch vereinfachte Berechnungsverfahren nachgewiesen werden; sie gelten für Biegeknicken um die schwache Achse des Stahlquerschnitts.
- ANMERKUNG 1 Anhang G enthält ein Berechnungsverfahren für Stahlquerschnitte mit Kammerbeton.
- ANMERKUNG 2 G.7 enthält ein Berechnungsverfahren für exzentrische Lasten.
- (2) Bezüglich Konstruktionsdetails wird auf 5.1, 5.3.1 und 5.4 verwiesen.

4.3.5.3 Ungeschützte betongefüllte Hohlprofile

- (1) Der Feuerwiderstand von Stützen mit ungeschützten, betongefüllten, rechteckigen oder runden Hohlprofilen darf durch vereinfachte Berechnungsverfahren nachgewiesen werden.
- ANMERKUNG 1 Anhang H enthält ein Verfahren für ungeschützte betongefüllte Hohlquerschnitte.
- ANMERKUNG 2 H.4 enthält ein Verfahren für exzentrische Lasten.
- (2) Bezüglich Konstruktionsdetails wird auf 5.1, 5.3.2 und 5.4 verwiesen.

4.3.5.4 Geschützte betongefüllte Hohlprofile

- (1) Der Feuerwiderstand betongefüllter Hohlprofile darf erhöht werden, indem Schutzsysteme auf die Oberfläche des Stahlprofils zur Verringerung des Wärmeübergangs appliziert werden.
- (2) Die Eigenschaften der für betongefüllte Hohlprofile eingesetzten Schutzsysteme sind in der Regel nach folgenden Vorschriften nachzuweisen:
- EN 13381-2 f
 ür senkrechte W
 ärmeschilde und
- EN 13381-6 f
 ür Bekleidungen oder Anstriche.
- (3) Das Traglastkriterium "R" ist erfüllt, wenn die Temperatur des Hohlprofils niedriger als 350 °C ist.

4.4 Allgemeine Berechnungsverfahren

4.4.1 Grundlagen der Berechnung

(1)P Allgemeine Berechnungsverfahren müssen eine wirklichkeitstreue Beschreibung des Tragwerks im Brandfall liefern. Sie müssen auf grundlegenden physikalischen Gesetzen aufbauen, so dass sie zu einer zuverlässigen Modellierung des zu erwartenden Verhaltens der maßgebenden Bauteile im Brandfall führen.

ANMERKUNG Im Vergleich zu Tabellen und vereinfachten Berechnungsverfahren liefern allgemeine Berechnungsverfahren eine bessere Abschätzung des wirklichen Verhaltens im Brandfall.

- (2) Allgemeine Berechnungsverfahren dürfen auf Einzelbauteile, auf Teil- und Gesamttragwerke angewendet werden.
- (3) Allgemeine Berechnungsverfahren dürfen auf jede Art von Querschnitt angewendet werden.
- (4) Allgemeine Berechnungsverfahren dürfen getrennte Berechnungsverfahren enthalten für:
- die Entwicklung und Verteilung der Bauteiltemperaturen (thermische Analyse) und
- das mechanische Tragwerksverhalten oder eines Teils (mechanische Analyse).
- (5)P Jede mögliche Versagensform, die durch das allgemeine Berechnungsverfahren nicht erfasst wird (einschließlich örtliches Beulen, ungenügende Rotationskapazität, Betonabplatzungen oder Schubversagen), muss durch geeignete Maßnahmen ausgeschlossen werden.
- (6) Allgemeine Berechnungsverfahren dürfen angewendet werden, wenn Daten zur Spannungs- und Dehnungsentwicklung, zu Verformungen und/oder zu Temperaturfeldern erforderlich sind.
- (7) Allgemeine Berechnungsverfahren dürfen mit jeder Aufheizungskurve angewendet werden, wenn die Werkstoffkennwerte für die maßgebenden Temperaturbereiche bekannt sind.

4.4.2 Thermische Analyse

- (1)P Allgemeine Berechnungsverfahren für die thermische Analyse müssen auf anerkannten Prinzipien und Annahmen der Theorie der Wärmeübertragung beruhen.
- (2)P Die thermische Analyse muss berücksichtigen:
- die maßgebenden Wärmeeinwirkungen nach EN 1991-1-2 und
- die Temperaturabhängigkeit der thermischen Werkstoffkennwerte nach 3.1 und 3.3.

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

- (3) Die Auswirkungen ungleichmäßiger Wärmeeinwirkungen und der Wärmeübertragung auf angrenzende Bauwerksteile dürfen berücksichtigt werden, falls es angemessen ist.
- (4) Einflüsse von Feuchtegehalt und Feuchtigkeitstransport in Beton und Brandschutzmaterialien dürfen auf der sicheren Seite liegend vernachlässigt werden.

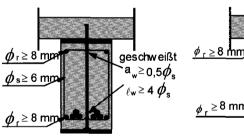
4.4.3 Mechanische Analyse

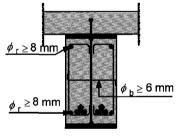
- (1)P Allgemeine Berechnungsverfahren für die mechanische Analyse müssen auf anerkannten Prinzipien und Annahmen der Theorie der Baumechanik mit Berücksichtigung der Temperatureinwirkungen beruhen.
- (2)P Falls erforderlich, muss die mechanische Analyse auch Folgendes berücksichtigen:
- gemeinsame Wirkungen von mechanischen Einwirkungen, geometrischen Imperfektionen und Wärmeeinwirkungen;
- temperaturabhängige mechanische Werkstoffkennwerte;
- geometrisch nichtlineare Effekte und
- Auswirkungen nichtlinearer Werkstoffeigenschaften, einschließlich der Auswirkungen von Entlastungen auf die Struktursteifigkeit.
- (3)P Die Auswirkungen thermisch bedingter Dehnungen und Spannungen sowohl infolge Temperaturerhöhung als auch infolge von Temperaturdifferenzen müssen berücksichtigt werden.
- (4) Falls die Spannungs-Dehnungsbeziehungen nach 3.1 und 3.2 angewendet werden, muss der Einfluss von Hochtemperaturkriechen nicht gesondert berücksichtigt werden.
- (5)P Die Verformungen im Grenzzustand, die sich aus dem Berechnungsverfahren ergeben, müssen angemessen begrenzt werden, um sicherzustellen, dass die Kompatibilität zwischen allen Tragwerksteilen aufrechterhalten bleibt.

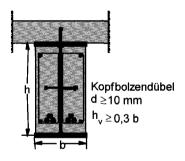
4.4.4 Gültigkeitsprüfung der allgemeinen Berechnungsverfahren

- (1)P Die Gültigkeit jedes allgemeinen Berechnungsverfahrens muss unter Anwendung der folgenden Regeln (2)P und (4)P nachgewiesen werden.
- (2)P Eine Gültigkeitsprüfung der Berechnungsergebnisse muss auf der Grundlage maßgebender Versuchsergebnisse erfolgen.
- (3) Berechnungsergebnisse können sich auf Verformungen, Temperaturen und Feuerwiderstandsdauern beziehen.
- (4)P Zur Beurteilung, ob das Berechnungsverfahren mit solider Ingenieurpraxis übereinstimmt, muss eine Sensibilitätsstudie der kritischen Parameter durchgeführt werden.
- (5) Kritische Parameter können sich auf die Knicklänge, die Bauteilgröße, den Lastausnutzungsgrad usw. beziehen.

5 Konstruktionsdetails

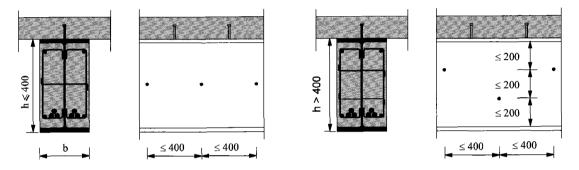

5.1 Einleitung


(1)P Die bauliche Durchbildung muss den anforderungsgemäßen Verbund zwischen Stahl und Beton für Verbundstützen und Verbundträger sowohl unter Normaltemperatur als auch im Brandfall sicherstellen.


- (2)P Kann der Verbund im Brandfall nicht aufrechterhalten werden, muss entweder der Stahl- oder der Betonteil des Verbundquerschnittes für sich allein die Brandschutzanforderungen erfüllen.
- (3) Bei betongefüllten Hohlprofilen und teilweise einbetonierten (z. B. kammerbetonierten) Querschnitten sind die Dübel in der Regel nicht direkt an den beflammten Teilen des Stahlquerschnittes anzubringen. Es dürfen jedoch dicke, tragende Knaggen mit Schubdübeln verwendet werden (siehe Bilder 5.5 und 5.6).
- (4) Bei geschweißten Querschnitten sind direkt beflammte Stahlteile in der Regel so an geschützte Stahlteile anzuschweißen, dass die volle Tragfähigkeit des dünneren Teiles erreicht wird.
- (5) Bei brandbeanspruchten Betonoberflächen hat die Betondeckung der Bewehrungsstäbe nach EN 1992-1-1, 4.4.1 in der Regel zwischen 20 mm und 50 mm für jede Bewehrung zu betragen. Diese Forderung ist nötig, um die Gefahr von Abplatzungen im Brandfall zu mindern.
- (6) Falls Beton lediglich isolierende Funktion zu erfüllen hat, sind Betonstahlmatten mit maximalen Stababständen von 250 mm und Mindestdurchmesser von 4 mm in beiden Richtungen um den Querschnitt herum anzuordnen und es ist (5) zu erfüllen.
- (7) Um (5) zu erfüllen, ist eine Mattenbewehrung nahe der brandbeanspruchten Bauteiloberfläche anzuordnen, wenn die Betondeckung der Bewehrungsstäbe 50 mm überschreitet.

5.2 Verbundträger

- (1)P Bei Verbundträgern aus Stahlträgern mit ausbetonierten Kammern muss der Beton zwischen den Flanschen bewehrt und mit dem Steg des Stahlquerschnitts verbunden werden.
- (2) Der Kammerbeton ist in der Regel mit Bügeln mit einem Mindestdurchmesser \mathcal{O}_s von 6 mm oder mit Betonstahlmatten mit einem Mindestdurchmesser von 4 mm zu bewehren. Die Betondeckung der Bügel darf in der Regel 35 mm nicht überschreiten. Der Abstand zwischen den Bügeln darf in der Regel 250 mm nicht überschreiten. In den Ecken der Bügel ist eine Längsbewehrung mit einem Mindestdurchmesser \mathcal{O}_r von 8 mm anzuordnen (siehe Bild 5.1).



- a) Anschweißen der Bügel an den Profilsteg
- Steckhaken durch Löcher im Profilsteg führen und am Bügel befestigen
- Anschweißen von Kopfbolzendübeln an den Profilsteg

Bild 5.1 — Maßnahmen zur Sicherung des Verbundes zwischen Stahlprofil und Kammerbeton

(3) Der Kammerbeton darf mit dem Steg durch eine Kehlnaht zwischen Bügel und Steg mit einer Mindestdicke von $a_{\rm w} \ge 0.5 \cdot \mathcal{O}_{\rm s}$ und einer Mindestlänge von $l_{\rm w} \ge 4 \cdot \mathcal{O}_{\rm s}$ (siehe Bild 5.1a) verbunden werden.

- (4) Der Kammerbeton darf mit dem Steg des Trägers durch Steckhaken, die durch Löcher im Steg gesteckt werden, oder beidseitig an den Steg geschweißte Kopfbolzendübel unter folgenden Bedingungen verbunden werden:
- Mindestdurchmesser der Steckhaken $\mathcal{Q}_b \ge 6$ mm (siehe Bild 5.1.b) und
- Mindestdurchmesser der Kopfbolzendübel $d \ge 10$ mm, Mindestlänge der Kopfbolzendübel $h_v \ge 0.3 \cdot b$; die Betondeckung des Dübelkopfes ist in der Regel mit mindestens 20 mm anzusetzen (siehe Bild 5.1.c);
- Steckhaken und Kopfbolzendübel werden für Stahlquerschnitte bis zu einer Höhe von 400 mm wie in Bild 5.2a und für Stahlquerschnitte mit einer Höhe über 400 mm wie in Bild 5.2b angeordnet. Bei Trägerhöhen größer als 400 mm sind die versetzt angeordneten Verbindungsmittel in der Regel mit einem Abstand kleiner oder gleich 200 mm anzuordnen.

- a) Höhe des Stahlquerschnitts h ≤ 400 mm
- b) Höhe des Stahlquerschnitts h > 400 mm

Bild 5.2 — Anordnung von Steckhaken oder Dübeln zur Sicherung des Verbundes zwischen Stahlprofil und Kammerbeton

5.3 Verbundstützen

5.3.1 Verbundstützen mit Kammerbeton

- (1)P Der Kammerbeton muss mit dem Steg entweder durch Bügel oder Dübel verbunden werden (siehe Bild 5.1).
- (2) Bügel sind in der Regel mit dem Steg zu verschweißen oder durch Löcher durch den Steg hindurchzustecken. Dübel sind in der Regel auf den Steg zu schweißen.
- (3) Die Abstände der Dübel oder Bügel darf in der Regel in Stützenlängsrichtung nicht größer als 500 mm sein. Im Bereich der Lasteinleitung sind die Abstände nach EN 1994-1-1 zu verringern.

ANMERKUNG Bei Stahlquerschnittshöhen h größer als 400 mm sind Dübel und Bügel nach Bild G.2 zu wählen.

5.3.2 Verbundstützen aus betongefüllten Hohlprofilen

- (1)P Zwischen den Trägeranschlüssen bedarf es keiner zusätzlichen Verdübelung über die Stützenlänge.
- (2) Die Zusatzbewehrung ist in der Regel mittels Bügel und Abstandshalter zu befestigen.
- (3) Die Bügelabstände in Stützenlängsrichtung dürfen in der Regel das 15fache des kleinsten Durchmessers der Längsbewehrung nicht überschreiten.
- (4)P Die Stahl-Hohlquerschnitte müssen in jedem Geschoss am Stützenkopf und am -fuß mindestens ein Loch mit einem Mindestdurchmesser von 20 mm erhalten.
- (5) Der Abstand dieser Löcher darf in der Regel 5 m nicht überschreiten.

5.4 Anschlüsse von Verbundträgern an Verbundstützen

5.4.1 Allgemeines

- (1)P Die Träger-Stützen-Anschlüsse müssen so bemessen und konstruiert sein, dass sie im Hinblick auf ihre Tragfähigkeit den gleichen Feuerwiderstand erreichen wie das lastübertragende Bauteil.
- (2) Eine Möglichkeit, dies für brandgeschützte Bauteile zu erreichen, ist den gleichen Brandschutz wie für das lastübertragende Bauteil zu verwenden und sicherzustellen, dass der Lastausnutzungsgrad kleiner oder gleich dem des Trägers ist.

ANMERKUNG EN 1993-1-2, 4.2.1 (6) und Anhang D, enthalten ein Verfahren für die Bemessung brandgeschützter Verbindungen.

- (3) Verbundträger und -stützen dürfen mit Knaggen oder Laschen verbunden werden, die mit dem Stahlquerschnitt der Verbundstütze verschweißt sind. Die Träger werden auf den Knaggen gelagert oder ihre Stege werden mit den Laschen verschraubt. In der Regel hat eine geeignete konstruktive Durchbildung der Knagge sicherzustellen, dass bei einer Verwendung von tragenden Knaggen der Träger in der Abkühlphase nicht von den Auflagern rutscht.
- (4) Wenn Anschlüsse nach den Bildern 5.4 bis 5.6 ausgeführt werden, erfüllt ihr Feuerwiderstand die gleichen Anforderungen wie die angrenzenden Bauteile. An Verbundstützen geschweißte tragende Knaggen dürfen in Verbindung mit brandgeschützten Stahlträgern verwendet werden.
- (5) Bei gelenkig gelagerten Einfeldträgern unter Normaltemperatur kann sich im Brandfall ein Stützmoment am Auflager bilden, wenn die Deckenbewehrung geeignet ist, eine Durchlaufwirkung sicherzustellen und wenn eine wirksame Übertragung der Druckkraft durch die Stahlverbindung (siehe Bild 5.3) sichergestellt ist.
- (6) Stützmomente können sich nach (5) und Bild 5.3 im Brandfall immer ausbilden bei:
- Spaltbreiten kleiner 10 mm oder
- 10 mm ≤ Spaltbreite < 15 mm bei Feuerwiderstandsklassen R 30 bis R 180 und Stützweiten größer als 5 m.</p>

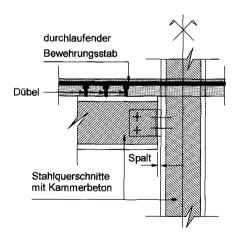


Bild 5.3 — Anschluss für die Ausbildung eines Stützmomentes im Brandfall

5.4.2 Anschlüsse von Verbundträgern an Verbundstützen mit vollständig einbetoniertem Stahlquerschnitt

(1) Knaggen und Laschen dürfen als Auflager für Verbundträger nach Bild 5.4 direkt an den Flansch des Stahlprofils der Verbundstütze angeschweißt werden.

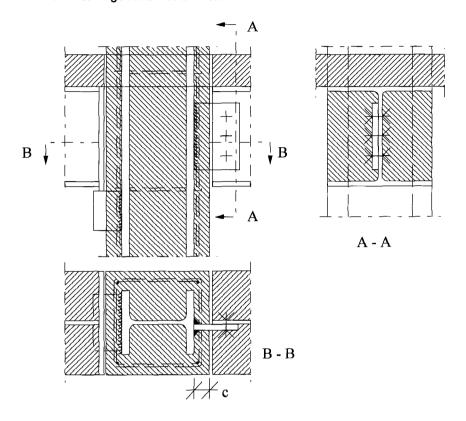


Bild 5.4 — Beispiele für Anschlüsse an den vollständig einbetonierten Stahlquerschnitt einer Stütze

5.4.3 Anschlüsse von Verbundträgern an Verbundstützen mit Kammerbeton

- (1) Bei ungeschützten Knaggen sind in der Regel wegen der brandbeanspruchten Schweißnähte zusätzliche Dübel vorzusehen (siehe Bild 5.5a). Die Schubtragfähigkeit der Dübel ist in der Regel nach 4.3.4.2.5 (1) zu bemessen. Die Dübeltemperatur ist dabei gleich der mittleren Temperatur der Knagge anzunehmen.
- (2) Für Feuerwiderstandsklassen bis R 120 sind keine zusätzlichen Dübel erforderlich, wenn folgende Bedingungen erfüllt sind (siehe Bild 5.5b):
- die Mindestdicke der ungeschützten Knagge beträgt 80 mm;
- die Knagge ist an allen vier Seiten mit dem Stützenflansch ununterbrochen verschweißt;
- die gegen direkte Strahlung geschützte obere Schweißnaht hat mindestens die 1,5fache Dicke der umlaufenden Schweißnaht und ist unter Normaltemperatur für mindestens 40 % des Bemessungswertes der Querkraft ausgelegt.

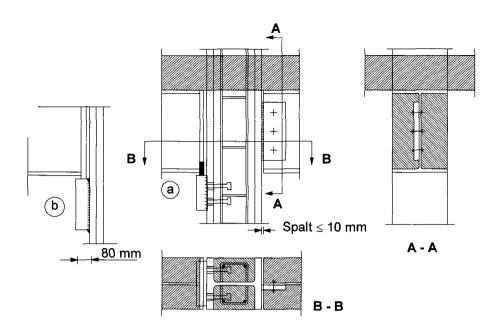
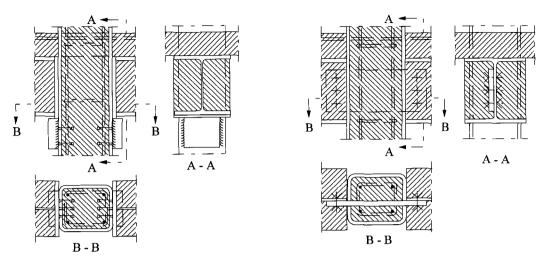



Bild 5.5 — Beispiele für Anschlüsse an einem kammerbetonierten Querschnitt

- (3) Bei Laschenanschlüssen darf der bleibende Spalt zwischen Träger und Stütze ungeschützt bleiben, wenn er nicht breiter als 10 mm ist (siehe Bild 5.5a).
- (4) Andere Anschlussausführungen siehe 5.4.1, (1)P.

5.4.4 Anschlüsse von Verbundträgern an Verbundstützen aus betongefüllten Hohlprofilen

- (1) Verbundträger dürfen an Verbundstützen aus betongefüllten Hohlprofilen mit Knaggen oder Laschen angeschlossen werden (siehe Bild 5.6).
- (2)P Quer- und Zugkräfte müssen mit geeigneten Mitteln vom Träger zum bewehrten Betonkern dieses Typs von Verbundstützen eingeleitet werden.
- (3) Bei Knaggen (siehe Bild 5.6a) ist die Querkrafteinleitung im Brandfall in der Regel mit zusätzlichen Dübeln sicherzustellen. Die Schubtragfähigkeit der Dübel ist in der Regel nach 4.3.4.2.5 (1) zu bemessen. Die Dübeltemperatur ist dabei gleich der mittleren Temperatur der Knagge anzunehmen.
- (4) Bei Laschenanschlüssen (siehe Bild 5.6b) sollten die Laschen den Stützenquerschnitt durchdringen und mit beiden Wandungen verschweißt sein.

a) Tragende Knaggen mit zusätzlichen Dübeln

b) Durchgesteckte Laschen

Bild 5.6 — Beispiele für Anschlüsse an betongefüllte Hohlprofile

Anhang A (informativ)

Spannungs-Dehnungsbeziehungen von Baustahl bei erhöhten Temperaturen

(1) Bild A.1 zeigt eine graphische Darstellung der Spannungs-Dehnungsbeziehungen für Baustahl S235 bis zu einer maximalen Dehnung von $\varepsilon_{a\nu,\theta}$ = 2 %. Die Darstellung entspricht den Bereichen I und II von Bild 3.1 und den Werten der Tabelle 3.2 nach 3.2.1 ohne Verfestigung.

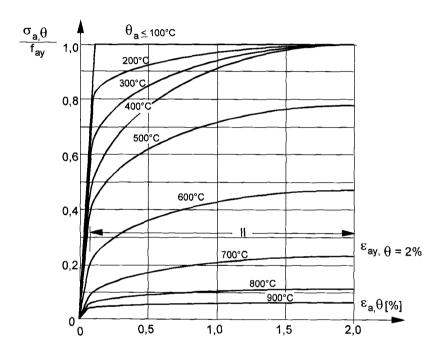


Bild A.1 — Graphische Darstellung der Spannungs-Dehnungsbeziehungen von Baustahl S235 bis zu einer Dehnung von 2 %

- (2) Die Spannungs-Dehnungsbeziehungen der Baustähle S235, S275, S355, S420 und S460 werden durch die Gleichungen in Tabelle 3.1 bis zu einer maximalen Dehnung von 2 % zahlenmäßig angegeben.
- (3) Für Temperaturen unter 400 °C darf alternativ die in 3.2.1(4) angesprochene Verfestigung entsprechend den folgenden Regeln (4), (5) und (6) angewendet werden.
- (4) Bild A.2 zeigt eine graphische Darstellung der Spannungs-Dehnungsbeziehungen einschließlich Verfestigung; darin
- stimmt Bild A.2 mit Bild A.1 (Bereich I und II) überein für Dehnungen bis 2 %;
- wird ein linearer Verlauf (Bereich Illa) angenommen für Dehnungen von 2 % bis 4 %;
- wird ein horizontales Plateau (Bereich IIIb) mit $\mathcal{E}_{au,\theta}$ = 15 % angenommen für Dehnungen von 4 % bis 15 %;
- wird ein abfallender Ast (Bereich IV) mit $f_{au,\theta}$ = 20 % angenommen für Dehnungen von 15 % bis 20 %.

(5) Die Zugfestigkeit bei erhöhter Temperatur $f_{au,\theta}$ zur Berücksichtigung der Verfestigung (siehe Bild A.3) darf wie folgt bestimmt werden:

$$\theta_a \leq 300 \, ^{\circ}C$$
; $f_{au,\theta} = 1,25 \, f_{av}$ (A.1)

300
$$<\theta_a \le 400 \,^{\circ}C$$
; $f_{au,\theta} = f_{ay} \left(2 - 0{,}0025 \,\theta_a\right)$ (A.2)

$$\theta_a \ge 400 \,^{\circ}C;$$
 $f_{av\theta} = f_{av\theta}$ (A.3)

(6) Für Dehnungen $\mathcal{E}_{a,\theta}$ größer als 2 % dürfen die Spannungs-Dehnungsbeziehungen bei Berücksichtigung der Verfestigung wie folgt bestimmt werden:

$$2\% < \varepsilon_{a,\theta} < 4\% \qquad \qquad \sigma_{a,\theta} = \left[\left(f_{au,\theta} - f_{ay,\theta} \right) / 0,02 \right] \varepsilon_{a,\theta} - f_{au,\theta} + 2 f_{ay,\theta}$$
 (A.4)

4 %
$$\leq \varepsilon_{a,\theta} \leq$$
 15 % $\sigma_{a,\theta} = f_{au,\theta}$ (A.5)

$$15 \% < \varepsilon_{a,\theta} < 20 \% \qquad \qquad \sigma_{a,\theta} = \left[1 - \left(\left(\varepsilon_{a,\theta} - 0.15\right)/0.05\right)\right] f_{au,\theta} \tag{A.6}$$

$$\varepsilon_{a,\theta} \ge 20 \%$$
 $\sigma_{a,\theta} = 0$ (A.7)

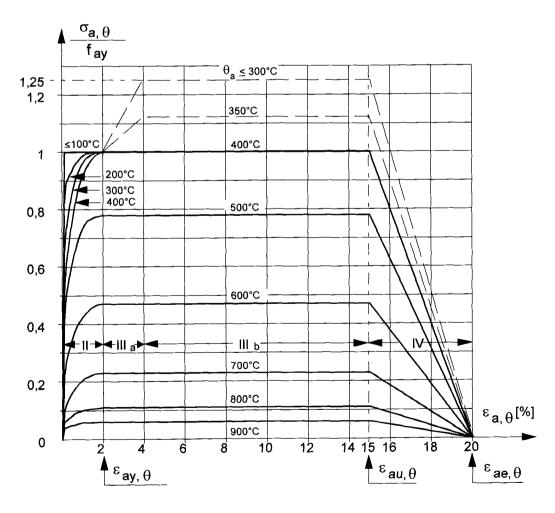


Bild A.2 — Graphische Darstellung der Spannungs-Dehnungsbeziehungen von Baustahl bei erhöhten Temperaturen mit Verfestigung

(7) Die Hauptparameter $E_{a,\theta}$, $f_{ap,\theta}$, $f_{ay,\theta}$, und $f_{au,\theta}$ der ansetzbaren Verfestigung dürfen anhand der Reduktionsfaktoren k_{θ} nach Bild A.3 bestimmt werden.

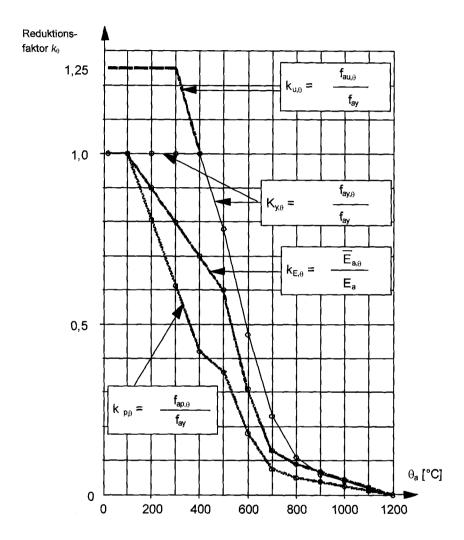


Bild A.3 — Reduktionsfaktoren k_0 für die Spannungs-Dehnungsbeziehungen von Baustahl bei erhöhten Temperaturen bei Berücksichtigung der Verfestigung (siehe auch 3.2.1, Tabelle 3.2)

Anhang B (informativ)

Spannungs-Dehnungsbeziehungen von quarzitischem Beton bei erhöhten Temperaturen

- (1) Bild B.1 zeigt eine graphische Darstellung der Spannungs-Dehnungsbeziehungen von quarzitischem Beton bis zu einer maximalen Stauchung von $\varepsilon_{ce,\theta}$ = 4,75 %. Diese Darstellung entspricht der mathematischen Formulierung in Bild 3.2 und den Werten der Tabelle 3.3 nach 3.2.2.
- (2) Der zulässige Bereich und die empfohlenen Werte für die zur Betondruckfestigkeit $f_{c,\theta}$ korrespondierende Stauchung $\varepsilon_{cu,\theta}$ nach Bild 3.2 dürfen Tabelle B.1 entnommen werden.
- (3) Die empfohlenen Werte für $\, {\cal E}_{ce, \theta} \,$ dürfen Tabelle B.1 entnommen werden.

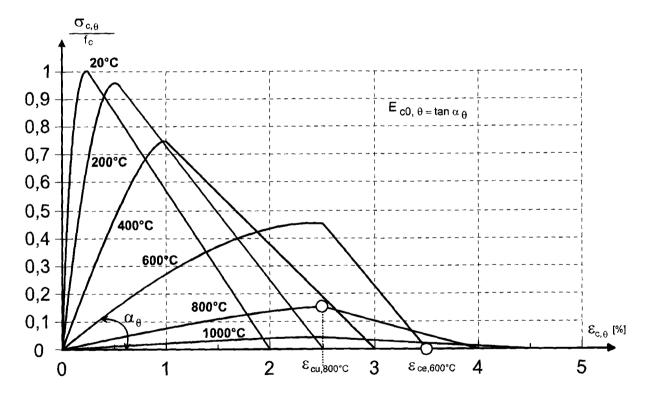


Bild B.1 — Graphische Darstellung der Spannungs-Dehnungsbeziehungen von quarzitischem Beton mit linear abfallendem Ast; eingerechnet sind die empfohlenen Werte für $\varepsilon_{cu,\theta}$ und $\varepsilon_{ce,\theta}$ nach Tabelle B.1

Tabelle B.1 — Parameter $\mathcal{E}_{cu,\theta}$ und $\mathcal{E}_{ce,\theta}$ zur Definition des abfallenden Astes der Spannungs-Dehnungsbeziehungen von Beton bei erhöhten Temperaturen

Betontemperatur	$\varepsilon_{cu,\theta}\cdot 10^3$	$\varepsilon_{ce, heta}\cdot extsf{10}^3$
$ heta_c$ $^{\circ}$ C	empfohlene Werte	empfohlene Werte
20	2,5	20,0
100	4,0	22,5
200	5,5	25,0
300	7,0	27,5
400	10	30,0
500	15	32,5
600	25	35,0
700	25	37,5
800	25	40,0
900	25	42,5
1 000	25	45,0
1 100	25	47,5
1 200	-	-

(4) Die Hauptparameter $f_{c,\theta}$ und $\mathcal{E}_{cu,\theta}$ der Spannungs-Dehnungsbeziehungen von quarzitischem Normalbeton und Leichtbeton bei erhöhten Temperaturen sind in Bild B.2 abgebildet. Die Druckfestigkeit $f_{c,\theta}$ und die zugehörige Dehnung $\mathcal{E}_{cu,\theta}$ bestimmen mit den Gleichungen aus Bild 3.2 den gesamten Bereich I des Materialmodells (siehe auch 3.2.2, Tabelle 3.3).

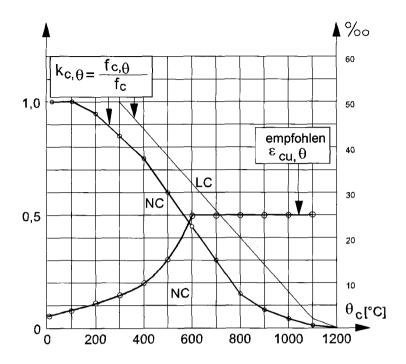


Bild B.2 — Parameter der Spannungs-Dehnungsbeziehungen von Normalbeton (NC) und Leichtbeton (LC) bei erhöhten Temperaturen

Anhang C (informativ)

Spannungs-Dehnungsbeziehungen von Beton, angepasst an natürliche Brände mit Abkühlungsphase für die Anwendung in allgemeinen Berechnungsverfahren

- (1) Beton erreicht bei Abkühlung auf eine Umgebungstemperatur von 20 °C nach vorhergehender Erwärmung auf eine maximale Temperatur von θ_{max} nicht wieder seine ursprüngliche Druckfestigkeit f_c .
- (2) Bei Berücksichtigung der Abkühlung von Beton (siehe Bild C.1) dürfen sowohl der Wert $\varepsilon_{cu,\theta}$ als auch die Neigung des abfallenden Astes in den Spannungs-Dehnungsbeziehungen zugehörig zu θ_{max} beibehalten werden (siehe Bild C.2).
- (3) Die Rest-Druckfestigkeit des auf eine maximale Temperatur θ_{max} erhitzten und wieder auf die Umgebungstemperatur von 20 °C abgekühlten Betons darf wie folgt angenommen werden:

$$f_{c,\theta,20\,^{\circ}\text{C}} = \varphi f_c \tag{C.1}$$

mit

20 °C
$$\leq \theta_{\text{max}} <$$
 100 °C $\varphi = k_{c,\theta \text{max}}$ (C.2)

$$\theta_{\text{max}} \ge 300 \, ^{\circ}\text{C}$$
 $\varphi = 0.9 \, k_{c.\theta_{\text{max}}}$ (C.4)

ANMERKUNG Der Reduktionsfaktor $k_{c,\theta \mathrm{max}}$ ist entsprechend 3.2.2(4) angenommen.

- (4) Während der Abkühlung des Betons mit $\theta_{\max} \geq \theta \geq 20\,^{\circ}$ C darf die zugehörige Zylinder-Druckfestigkeit $f_{c,\theta}$ linear zwischen $f_{c,\theta\max}$ und $f_{c,\theta,20\,^{\circ}\text{C}}$ interpoliert werden.
- (5) Die oben angeführten Regeln dürfen für Beton C40/50 mittels Bild C.2 wie folgt erläutert werden:

$$\theta_I = 200 \text{ °C}; \qquad f_{c,\theta I} = 0.95 \cdot 40 = 38$$
 N/mm² (C.5)

$$\mathcal{E}_{cu,\theta I} = 0.55 \tag{C.6}$$

$$\mathcal{E}_{ce,\theta l} = 2,5 \tag{C.7}$$

$$\theta_2 = 400 \, ^{\circ}\text{C}; \qquad f_{c,\theta 2} = 0.75 \cdot 40 = 30$$
 N/mm² (C.8)

$$\varepsilon_{cu,\theta 2} = 1$$
 (C.9)

$$\varepsilon_{ce,\theta 2} = 3.0 \tag{C.10}$$

Bei einer möglichen maximalen Betontemperatur von $\,\theta_{\rm \it max}\,$ = 600 °C:

$$f_{c,\theta \max} = 0.45 \cdot 40 = 18$$
 N/mm² (C.11)

$$\varepsilon_{cu,\theta \max} = 2.5$$
 (C.12)

$$\varepsilon_{ce,\theta \max} = 3.5$$
 (C.13)

Für jede niedrigere Temperatur während der anschließenden Abkühlphase wie für $\, heta_{\scriptscriptstyle 3}\,$ = 400 °C:

$$f_{c,\theta, 20^{\circ}C} = (0.9 \ k_{c,\theta \,\text{max}}) f_c = 0.9 \cdot 0.45 \cdot 40 = 16.2$$
 N/mm² (C.14)

$$f_{c,\theta 3} = f_{c,\theta \text{max}} - \left[\left(f_{c,\theta \text{max}} - f_{c,\theta,20^{\circ}C} \right) \left(\theta_{\text{max}} - \theta_{3} \right) I \left(\theta_{\text{max}} - 20 \right) \right] = 17,4$$
 N/mm² (C.15)

$$\varepsilon_{cu,\theta 3} = \varepsilon_{cu,\theta \max} = 2.5$$
 (C.16)

$$\varepsilon_{ce,\theta 3} = \varepsilon_{cu,\theta 3} + \left[\left(\varepsilon_{ce,\theta \max} - \varepsilon_{cu,\theta \max} \right) f_{c,\theta 3} / f_{c,\theta \max} \right] = 3,46$$
(C.17)

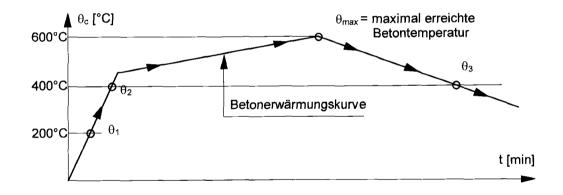


Bild C.1 — Beispiel für die Erwärmung und Abkühlung von Beton

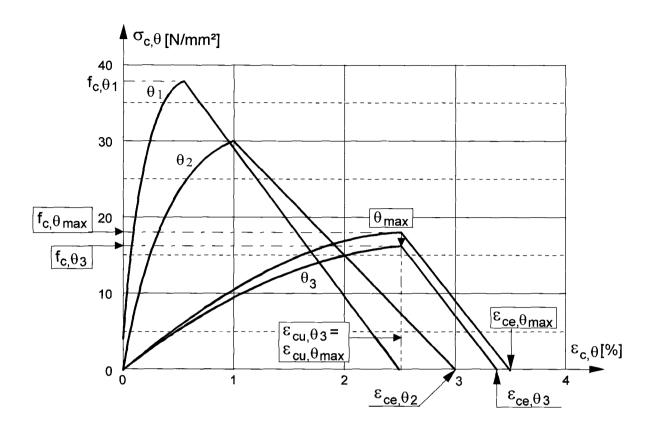
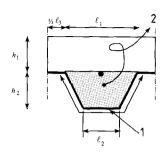


Bild C.2 — Spannungs-Dehnungsbeziehung eines Betons der Festigkeitsklasse C40/50; Erwärmung auf θ_1 = 200 °C, θ_2 = 400 °C, θ_{max} = 600 °C und anschließende Abkühlung auf θ_3 = 400 °C

Anhang D (informativ)

Berechnungsverfahren für den Feuerwiderstand von ungeschützten Verbunddecken mit Brandbeanspruchung nach Einheits-Temperaturzeitkurve an der Unterseite

D.1 Feuerwiderstand hinsichtlich der Wärmedämmung


(1) Die Feuerwiderstandsdauer hinsichtlich des Isolierkriteriums "I" unter Einhaltung sowohl des mittleren Temperaturanstiegs (= 140 °C) als auch des maximalen Temperaturanstiegs (= 180 °C) darf nach folgender Gleichung berechnet werden:

$$t_{i} = a_{0} + a_{1} \cdot h_{1} + a_{2} \cdot \Phi + a_{3} \cdot \frac{A}{L_{r}} + a_{4} \cdot \frac{1}{\ell_{3}} + a_{5} \cdot \frac{A}{L_{r}} \cdot \frac{1}{\ell_{3}}$$
(D.1)

Dabei ist

- t, die Feuerwiderstandsdauer hinsichtlich der Wärmedämmung, min;
- A das Betonvolumen einer Rippe pro Meter Rippenlänge, mm³/m;
- L_r die brandbeanspruchte Fläche einer Rippe je Meter Rippenlänge, $\mathrm{mm}^2/\mathrm{m};$
- A/L_{\star} der Rippengeometriefaktor, mm;
- Φ der Sichtfaktor des Oberflansches;
- ℓ_3 die Breite des Oberflansches (siehe Bild D.1), mm.

Die Koeffizienten a_i sind für Normalbeton und für Leichtbeton entsprechend Bild D.1 und Tabelle D.1 angegeben. Zwischenwerte dürfen linear interpoliert werden.

$$\frac{A}{L_r} = \frac{h_2 \left(\frac{\ell_1 + \ell_2}{2}\right)}{\ell_2 + 2\sqrt{h_2^2 + \left(\frac{\ell_1 - \ell_2}{2}\right)^2}}$$
 (D.2)

Legende

1 - brandbeanspruchte Oberfläche: Lr

2 - Rippenquerschnittsfläche: A

Bild D.1 — Definition des Rippengeometriefaktors A/L, für Rippen von Verbunddecken

Tabelle D.1 — Koeffizienten zur Bestimmung der Feuerwiderstandsdauer bezüglich der Wärmedämmung

	a ₀	a ₁	a ₂	a ₃	a ₄	a ₅
	min	min/mm	min	min/mm	mm min	min
Normalbeton	-28,8	1,55	-12,6	0,33	-735	48,0
Leichtbeton	-79,2	2,18	-2,44	0,56	-542	52,3

(2) Der Sichtfaktor Φ des Oberflansches darf wie folgt bestimmt werden:

$$\Phi = \left(\sqrt{h_2^2 + \left(l_3 + \frac{l_1 - l_2}{2}\right)^2} - \sqrt{h_2^2 + \left(\frac{l_1 - l_2}{2}\right)^2}\right) / l_3$$
(D.3)

D.2 Berechnung der positiven Momententragfähigkeit M_{fl.Rd}⁺

(1) Die Temperaturen θ_a des Unterflansches, des Stegs und des Oberflansches des Stahlprofilbleches dürfen nach Gleichung (D.4) unter Verwendung der von den Teilquerschnitten abhängigen Koeffizienten b_0 bis b_4 berechnet werden.

$$\theta_a = b_0 + b_1 \cdot \frac{1}{\ell_3} + b_2 \cdot \frac{A}{L_r} + b_3 \cdot \Phi + b_4 \cdot \Phi^2$$
 (D.4)

Dabei ist

 θ_a Temperatur des Unterflansches, des Stegs oder des Oberflansches, °C

Die Koeffizienten b_i sind sowohl für Normalbeton als auch für Leichtbeton in Tabelle D.2 angegeben. Zwischenwerte dürfen linear interpoliert werden.

Tabelle D.2 — Koeffizienten für die Bestimmung der Temperaturen in einzelnen Teilen des Stahlprofilblechs

Beton	Feuerwider-	Teil des Stahl-	b_0	b ₁	<i>b</i> ₂	b ₃	<i>b</i> ₄
	standsdauer min	profilblechs	°C	°C · mm	°C · mm	°C	°C
Normal-	60	Unterflansch	951	-1197	-2,32	86,4	-150,7
beton		Steg	661	-833	-2,96	537,7	-351,9
		Oberflansch	340	-3269	-2,62	1148,4	-679,8
	90	Unterflansch	1018	-839	-1,55	65,1	-108,1
		Steg	816	-959	-2,21	464,9	-340,2
		Oberflansch	618	-2786	-1,79	767,9	-472,0
	120	Unterflansch	1063	-679	-1,13	46,7	-82,8
ľ		Steg	925	-949	-1,82	344,2	-267,4
ĺ		Oberflansch	770	-2460	-1,67	592,6	-379,0
Leicht-	30	Unterflansch	800	-1326	-2,65	114,5	-181,2
beton		Steg	483	-286	-2,26	439,6	-244,0
}		Oberflansch	331	-2284	-1,54	488,8	-131,7
	60	Unterflansch	955	-622	-1,32	47,7	-81,1
		Steg	761	-558	-1,67	426,5	-303,0
		Oberflansch	607	-2261	-1,02	664,5	-410,0
Ţ	90	Unterflansch	1019	-478	-0,91	32,7	-60,8
		Steg	906	-654	-1,36	287,8	-230,3
		Oberflansch	789	-1847	-0,99	469,5	-313,0
	120	Unterflansch	1062	-399	-0,65	19,8	-43,7
		Steg	989	-629	-1,07	186,1	-152,6
		Oberflansch	903	-1561	-0,92	305,2	-197,2

⁽²⁾ Der Sichtfaktor Φ des Oberflansches und der Rippengeometriefaktor A/L, dürfen nach D.1 bestimmt werden.

$$\theta_s = c_0 + \left(c_1 \cdot \frac{u_3}{h_2}\right) + \left(c_2 \cdot z\right) + \left(c_3 \cdot \frac{A}{L_r}\right) + \left(c_4 \cdot \alpha\right) + \left(c_5 \cdot \frac{1}{\ell_3}\right) \tag{D.5}$$

⁽³⁾ Die Temperatur θ_s der Bewehrungsstäbe in den Rippen (siehe Bild D.2) ergibt sich zu:

Dabei ist

- θ_s die Temperatur der Zulagebewehrung in den Rippen, °C;
- u_3 der Abstand zum Unterflansch, mm;
- z der Vergleichswert für die Lage des Bewehrungsstabes in der Rippe (siehe (4)), mm^{-0.5};
- α die Neigung des Stegs, Grad (°).

Die Koeffizienten c_i sind sowohl für Normalbeton als auch für Leichtbeton in Tabelle D.3 angegeben. Zwischenwerte dürfen linear interpoliert werden.

Tabelle D.3 — Koeffizienten für die Bestimmung der Temperatur der Bewehrungsstäbe in den Rippen

Beton	Feuerwiderstands-	c ₀	C ₁	C ₂	C ₃	C ₄	C ₅
	dauer min	°C	°C	°C · mm ^{0.5}	°C · mm	°C/°	°C · mm
Normal- beton	60	1 191	-250	-240	-5,01	1,04	-925
beton	90	1 342	-256	-235	-5,30	1,39	-1267
	120	1 387	-238	-227	-4,79	1,68	-1326
Leicht-	30	809	-135	-243	-0,70	0,48	-315
beton	60	1 336	-242	-292	-6,11	1,63	-900
	90	1 381	-240	-269	-5,46	2,24	-918
	120	1 397	-230	-253	-4,44	2,47	-906

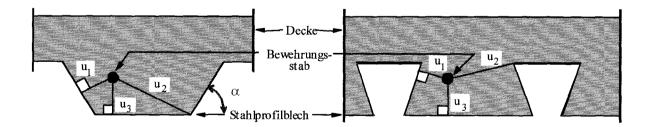


Bild D.2 — Parameter für die Lage der Bewehrung

(4) Der z-Faktor zur Berücksichtigung der Bewehrungslage ergibt sich zu:

$$\frac{1}{z} = \frac{1}{\sqrt{u_1}} + \frac{1}{\sqrt{u_2}} + \frac{1}{\sqrt{u_3}} \tag{D.6}$$

- (5) Die Abstände u_1 , u_2 und u_3 sind in mm angegeben und wie folgt definiert:
- u_1, u_2 kleinster Abstand vom Mittelpunkt des Bewehrungsstabs zu jedem Punkt auf dem Steg des Stahlprofilblechs;
- u_z Abstand vom Mittelpunkt des Bewehrungsstabs zum Unterflansch des Stahlprofilblechs.
- (6) Ausgehend von den Temperaturen nach (1) bis (5) werden die Grenzspannungen der einzelnen Teile der Verbunddecke und die positive Momententragfähigkeit nach 4.3.1 berechnet.

D.3 Berechnung der negativen Momententragfähigkeit Mfi,Rd

- (1) Auf der sicheren Seite liegend darf die Mitwirkung des Stahlprofilblechs an der negativen Momententragfähigkeit vernachlässigt werden.
- (2) Die negative Momententragfähigkeit der Decke wird unter der Annahme einer reduzierten Querschnittsfläche berechnet. Teile des Querschnitts mit Temperaturen jenseits einer bestimmten Grenztemperatur θ_{lim} werden außer Acht gelassen. Für den Restquerschnitt werden Bedingungen wie bei Raumtemperatur angenommen.
- (3) Der Restquerschnitt wird auf der Grundlage der Isotherme für die Grenztemperatur bestimmt (siehe Bild D.3a). Der Verlauf der Isotherme der Grenztemperatur wird vereinfacht durch vier charakteristische Punkte wie folgt gekennzeichnet (siehe Bild D.3b):
- Punkt I: liegt auf der Mittelachse der Rippe; der Abstand vom Unterflansch des Stahlprofilblechs wird als Funktion der Grenztemperatur nach (4) und (5), Gleichungen D.7 und D.9 berechnet;
- Punkt II: liegt auf einer Linie durch Punkt I parallel zum Unterflansch des Stahlprofilblechs im gleichen Abstand zum Steg des Stahlprofilblechs wie zum Unterflansch;
- Punkt III: liegt auf einer Linie durch den Oberflansch des Stahlprofilblechs und im gleichen Abstand zu dem Steg des Stahlprofilblechs wie der Punkt IV zu dem Oberflansch;
- Punkt IV: liegt auf der Mittellinie zwischen zwei Rippen; der Abstand vom Oberflansch des Stahlprofilblechs wird als Funktion der Grenztemperatur nach (4) und (5), der Gleichungen D.7 und D.14 berechnet.

Die Isotherme ergibt sich aus linearer Interpolation zwischen den Punkten I, II, III und IV.

ANMERKUNG Die Grenztemperatur wurde aus einem Kräftegleichgewicht über den Querschnitt hergeleitet und hat deshalb keine Beziehung zu einer Einwirkung aus Temperatur.

A) Temperaturverteilung im Querschnitt

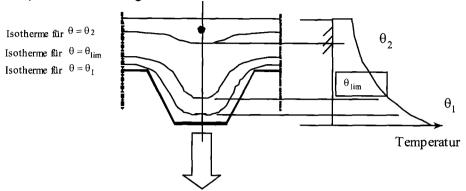


Bild D.3.a - Verlauf der Isothermen

B) Verlauf der speziellen Isotherme $\theta = \theta_{lim}$

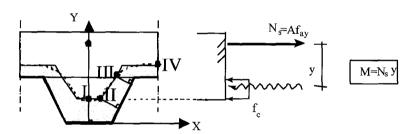


Bild D.3.b — Festlegung der Isotherme

(4) Die Grenztemperatur $\theta_{\it lim}$ ergibt sich zu:

$$\theta_{lim} = d_0 + d_1 \cdot N_s + d_2 \cdot \frac{A}{L_r} + d_3 \cdot \Phi + d_4 \cdot \frac{1}{\ell_3}$$
 (D.7)

Dabei ist

 $N_{\rm s}$ die Normalkraft in der Stützbewehrung, N.

Die Koeffizienten d_i sind für Normalbeton und für Leichtbeton in Tabelle D.3.3 angegeben. Zwischenwerte dürfen linear interpoliert werden.

(5) Die Koordinaten der vier Punkte I bis IV ergeben sich zu:

$$X_t = 0$$

$$Y_{I} = Y_{II} = \frac{1}{\left(\frac{1}{z} - \frac{4}{\sqrt{\ell_{1} + \ell_{2}}}\right)^{2}}$$

(D.10)

$$X_{II} = \frac{1}{2} \ell_2 + \frac{Y_I}{\sin \alpha} \cdot (\cos \alpha - 1)$$

mit:
$$\alpha = \arctan\left(\frac{2 h_2}{\ell_1 - \ell_2}\right)$$

$$X_{III} = \frac{1}{2} \ell_1 - \frac{b}{\sin \alpha}$$
 (D.11)

mit:
$$a = \left(\frac{1}{z} - \frac{1}{\sqrt{h_2}}\right)^2 \ell_1 \sin \alpha$$

$$Y_{III} = h_2 \tag{D.12}$$

mit:
$$b = \frac{1}{2} \ell_1 \sin \alpha \left(1 - \frac{\sqrt{a^2 - 4a + c}}{a} \right)$$

$$X_{IV} = \frac{1}{2}\ell_1 + \frac{1}{2}\ell_3 \tag{D.13}$$

mit:
$$c = -8 \left(1 + \sqrt{1+a}\right)$$
; $a \ge 8$

$$Y_{IV} = h_2 + b \tag{D.14}$$

mit:
$$c = -8 (1 + \sqrt{1+a}); a \ge 8$$

mit: $c = +8 (1 + \sqrt{1+a}); a < 8$

Tabelle D.4 — Koeffizienten für die Bestimmung der Grenztemperatur

Beton	Feuerwiderstands-	d_0	d ₁	d_2	d_3	d ₄
Doton	dauer min	°C	°C · N	°C·mm	°C	°C · mm
Normalbeton	60	867	-1,9·10 ⁻⁴	-8,75	-123	-1 378
	90	1 055	-2,2·10 ⁻⁴	-9,91	-154	-1 990
	120	1 144	-2,2·10 ⁻⁴	-9,71	-166	-2 155
Leichtbeton	30	524	-1,6·10 ⁻⁴	-3,43	-80	-392
	60	1 030	-2,6·10 ⁻⁴	-10,95	-181	-1 834
	90	1 159	-2,5·10 ⁻⁴	-10,88	-208	-2 233
,	120	1 213	-2,5·10 ⁻⁴	-10,09	-214	-2 320

- (6) Der Parameter z in (5) darf durch Lösung der Gleichung D.5 für die Bestimmung der Bewehrungstemperatur unter der Annahme $u_3/h_2=0.75$ und $\theta_8=\theta_{\rm lim}$ berechnet werden.
- (7) Für den Fall, dass $Y_I > h_2$ ist, dürfen die Rippen der Decke vernachlässigt werden. Mit Hilfe von Tabelle D.5 lässt sich der Ort der Isotherme konservativ annähern.

Tabelle D.5 — Temperaturverteilung in einer massiven 100 mm dicken Decke aus ungeschütztem Normalbeton

Tiefe x				-	nacl min	n einer von	
mm	30'	60'	90.	120'	180'	240'	
5	535	705					
10	470	642	738				θ{c}
15	415	581	681	754			h _{eff} x
_20	350	525	627	697			
25	300	469	571	642	738		,
_30	250	421	519	591	689	740	/
35	210	374	473	542	635	700	/ beflammte Unterseite
_ 40	180	327	428	493	590	670	/ der Decke
45	160	289	387	454	549	645	
50	140	250	345	415	508	550	
55	125	200	294	369	469	520	
60	110	175	271	342	430	495	
80	80	140	220	270	330	395	
100	60	100	160	210	260	305	

- (8) Die negative Momententragfähigkeit wird nach 4.3.1 unter der Verwendung der durch (1) bis (7) bestimmten Restquerschnittsfläche berechnet.
- (9) Für Leichtbeton reduzieren sich die Temperaturen aus Tabelle D.5 auf 90 % der angegebenen Werte.

D.4 Effektive Dicke einer Verbunddecke

(1) Die effektive Dicke $h_{\it eff}$ ergibt sich durch folgende Gleichungen:

$$h_{\text{eff}} = h_1 + 0.5 \ h_2 \left(\frac{\ell_1 + \ell_2}{\ell_1 + \ell_3} \right)$$
 für $h_2 / h_1 \le 1.5$ and $h_1 > 40 \text{ mm}$ (D.15a)

$$h_{eff} = h_1 \left[1 + 0.75 \left(\frac{\ell_1 + \ell_2}{\ell_1 + \ell_3} \right) \right]$$
 für $h_2/h_1 > 1.5$ and $h_1 > 40$ mm (D.15b)

Die Querschnittsabmessungen der Decke h_1 , h_2 , ℓ_1 , ℓ_2 und ℓ_3 sind in den Bildern 4.1 und 4.2 dargestellt.

- (2) Ist $\ell_3 > 2 \ell_1$, so darf die effektive Dicke gleich h_1 gesetzt werden.
- (3) Die Beziehung der Feuerwiderstandsdauer in Bezug auf das thermische Isolierkriterium und die effektive Mindestdeckendicke $h_{\it eff}$ zeigt Tabelle D.6 für verschiedene Feuerwiderstandsklassen; dabei ist h_3 die Dicke des eventuell vorhandenen Estrichs oben auf der Betondecke.

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

AC) Tabelle D.6 — Effektive Mindestdicke als Funktion der Feuerwiderstandsklasse

Feuerwiderstandsklasse	Effektive Mindestdicke $h_{\rm eff}$ mm
130	60 - h ₃
I 60	80 - h ₃
I 90	100 - h ₃
l 120	120 - h ₃
l 180	150 - h ₃
l 240	175 - h ₃

(AC

D.5 Anwendungsbereich

(1) Der Anwendungsbereich für ungeschützte Verbunddecken, sowohl mit Normalbeton (NC) als auch mit Leichtbeton (LC), ist in Tabelle D.7 gegeben. Für Bezeichnungen siehe Bilder 4.1 und 4.2.

Tabelle D.7 — Anwendungsbereich

für h	für hinterschnittene Profile				für Trapezprofile							
77,0	≤	<i>l</i> ₁	≤	135,0	mm		80,0	≤	ℓ ₁	_≤	155,0	mm
110,0	≤	ℓ_2	≤	150,0	mm		32,0	≤	ℓ_2	≤	132,0	mm
38,5	≤	ℓ_3	≤	97,5	mm		40,0	≤	ℓ_3	≤	115,0	mm
50,0	≤	h_1	≤	130,0	mm		50,0	≤	h_1	≤	125,0	mm
30,0	≤	h ₂	≤	60,0	mm		50,0	≤	h ₂	≤	100,0	mm
						l						

Anhang E (informativ)

Berechnungsverfahren für die positive und negative Momententragfähigkeit eines Verbundträgers, bestehend aus Stahlträger mit Betondeckenplatte bei Brandbeanspruchung von unten

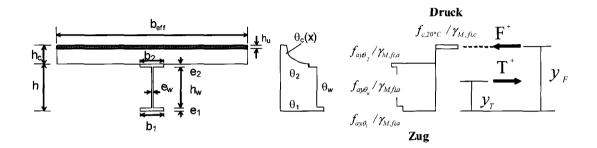


Bild E.1 — Berechnung der positiven Biegemomententragfähigkeit

E.1 Berechnung der positiven Momententragfähigkeit $\mathbf{M}_{\mathrm{fi.Rd}^+}$

(1) Entsprechend Bild E.1 dürfen die Zugkraft T^{+} und ihre Lage y_{T} wie folgt bestimmt werden:

$$T^{+} = \left[f_{ay,\theta 1}(b_{l} e_{l}) + f_{ay,\theta w}(h_{w} e_{w}) + f_{ay,\theta 2}(b_{2} e_{2}) \right] / \gamma_{M,fi,a}$$
 (E.1)

$$y_{T} = \left[f_{av,\theta l}(b_{l})(e_{l}^{2}/2) + f_{av,\theta w}(h_{w} e_{w})(e_{l} + h_{w}/2) + f_{av,\theta 2}(b_{2} e_{2})(h - e_{2}/2) \right] / \left(T^{+} \gamma_{M,fi,a} \right)$$
 (E.2)

mit dem maximalen Spannungsniveau $f_{av,\, heta}$ nach 3.2.1 bei der Temperatur heta nach 4.3.4.2.2.

(2) Für einen gelenkig gelagerten Einfeldträger ist die Zugkraft T^+ nach (1) wie folgt zu begrenzen:

$$T^+ \le N P_{fi,Rd} \tag{E.3}$$

Dabei ist

N die kleinste Dübelanzahl innerhalb einer der kritischen Längen des Trägers;

 $P_{\rm fi,Rd}$ der Bemessungswert der Dübeltragfähigkeit im Brandfall nach 4.3.4.2.5.

ANMERKUNG Die kritische Länge wird auf der einen Seite durch ein Endauflager und auf der anderen Seite durch den Querschnitt mit der maximalen Biegebeanspruchung begrenzt.

(3) Die Höhe der Druckzone h_n wird bestimmt aus:

$$h_u = T^+ / \left(b_{eff} f_c / \gamma_{M, fi, c} \right) \tag{E.4}$$

Dabei ist

 $b_{\rm eff}$ die mittragende Breite nach EN 1994-1-1, 5.4.1.2;

 f_c die Betondruckfestigkeit bei Raumtemperatur.

- (4) Zwei Fälle können auftreten:
- $(h_c h_u) \ge h_{cr}$ mit h_{cr} als die erforderliche Dicke x nach Tabelle D.5 zugehörig zu Temperaturen unterhalb 250 °C. In diesem Fall gelten die Werte für h_u entsprechend Gleichung (E.4) oder
- $(h_c h_u) < h_{cr}$; einige Schichten der Betondruckzone haben höhere Temperaturen als 250 °C. Daher darf eine Abminderung der Betondruckfestigkeit nach 3.2.2 berücksichtigt werden. Dies darf iterativ durch Änderung des Index "n" unter der Annahme von Durchschnittstemperaturen je 10 mm Schicht auf der Grundlage von Tabelle D.5 wie folgt durchgeführt werden:

$$T^{+} = F = \left[\left(h_{c} - h_{cr} \right) \left(b_{eff} \right) f_{c} + \sum_{i=2}^{n-1} \left(10b_{eff} \right) f_{c,\theta i} + \left(h_{u,n} \ b_{eff} \right) f_{c,\theta n} \right] / \gamma_{M,fi,c}$$
 (E.5)

mit

$$h_u = (h_c - h_{cr}) + 10(n-2) + h_{u,n}$$
 mm

Dabei ist

n die Gesamtzahl der gedrückten Betonschichten, einschließlich der obersten Schicht $\left(h_c-h_{cr}\right)$ mit einer Temperatur unter 250 °C.

(5) Der Angriffspunkt der Druckkraft ergibt sich aus

$$y_F \approx h + h_c - \left(h_u/2\right) \tag{E.6}$$

und die positive Momententragfähigkeit ist

$$M_{f_{R}R_d^+} = T^+ (y_F - y_T)$$
 (E.7)

Dabei ist T^+ die kleinste Zugkraft nach Gleichung (E.5) unter Berücksichtigung von (E.3).

- (6) Dieses Berechnungsverfahren darf auf Verbunddecken mit Stahlprofilblechen angewendet werden, wenn in (3) und (4) h_c durch h_{eff} nach D.4(1) ersetzt wird und wenn h_u auf h_1 nach den Bildern 4.1 und 4.2 begrenzt wird.
- (7) In Verbindung mit 4.3.4.2.4 darf dieses Rechenmodell für das Modell der kritischen Temperatur nach 4.3.4.2.3 angewendet werden, wenn $\theta_1 = \theta_w = \theta_2 = \theta_{cr}$ angenommen wird.
- (8) Ein ähnliches Verfahren darf angewendet werden, wenn die Nulllinie nicht in der Betonplatte, sondern im Stahlträger liegt.

E.2 Berechnung der negativen Momententragfähigkeit $M_{\rm fi,Rd}$ an einem Zwischenauflager (oder an einer Einspannung)

- (1) Die mittragende Breite der Decke an einem Zwischenauflager (oder an einer Einspannung) $b_{\it eff}^-$ darf so bestimmt werden, dass die plastische Nulllinie nicht in der Betondecke liegt, d. h. es wird angenommen, dass die Decke über die gesamte Höhe gerissen ist. Diese mittragende Breite darf nicht größer sein als die in der Kaltbernessung nach EN 1994-1-1, 5.4.1.2 bestimmte Breite.
- (2) Für die Längszugbewehrung darf die Fließgrenze $f_{sy,\theta s}$ angenommen werden, wobei θ_s die Temperatur der Decke in Höhe der Bewehrungsstäbe ist.
- (3) Die folgenden Regeln setzen voraus, dass die plastische Nulllinie genau in der Verbundfuge zwischen Decke und Stahlquerschnitt liegt. Wenn die plastische Nulllinie in dem Stahlquerschnitt liegt, dürfen die Gleichungen analog angepasst werden.
- (4) Die negative plastische Momententragfähigkeit des Verbundquerschnitts darf unter Verwendung des Spannungsdiagramms nach Bild E.2 bestimmt werden. Dabei sind die Temperaturen θ_1 , θ_2 , θ_w nach 4.3.4.2.2 zu berechnen.

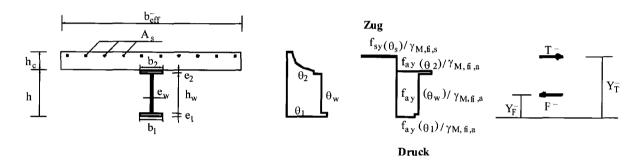


Bild E.2 — Berechnung der negativen Biegemomententragfähigkeit

(5) Die negative Momententragfähigkeit wird bestimmt durch:

$$M_{f_{LRd^{-}}} = T^{-}(y_{T}^{-} - y_{F}^{-})$$

Dabei ist

 T^- die gesamte Zugkraft in der Bewehrung; sie ist gleich der Druckkraft F^- im Stahlquerschnitt.

(6) \blacksquare Der Wert der Druckkraft F^+ in der Decke, an dem maßgeblichen Querschnitt innerhalb der betrachteten Spannweite (siehe Regel E.1 (2)), darf wie folgt bestimmt werden:

$$F^+ \leq N \times P_{f_{i},Rd} - T^- \tag{E.8}$$

Dabei ist

N die Anzahl der Schubdübel zwischen dem kritischen Querschnitt und dem Zwischenauflager (oder der Einspannung);

 $P_{\it fi,Rd}$ der Bemessungswert der Dübeltragfähigkeit im Brandfall nach 4.3.4.2.5.

(7) Die zuvor genannten Regeln dürfen für Querschnitte verwendet werden, die im Brandfall den Klassen 1 und 2 zugeordnet werden. Für Querschnitte der Klassen 3 und 4 gelten die folgenden Absätze (8) und (9).

ANMERKUNG Eine Klassifizierung im Brandfall erfolgt nach EN 1993-1-2, 4.2.2.

- (8) Wenn der Stahlsteg oder der untere Stahlflansch des Verbundquerschnitts im Brandfall der Klasse 3 zugeordnet wird, darf dessen Breite auf einen wirksamen Wert nach EN 1993-1-5 verringert werden, wobei f_{ν} und E entsprechend durch $f_{a\nu,\theta}$ und $E_{a,\theta}$ ersetzt werden.
- (9) Wenn der Stahlsteg oder der untere Stahlflansch des Verbundquerschnitts im Brandfall der Klasse 4 zugeordnet wird, darf dessen Tragfähigkeit vernachlässigt werden.

E.3 Örtliche Tragfähigkeit am Auflager

- (1) Die örtliche Tragfähigkeit des Stahlquerschnitts muss für die Reaktionskraft am Auflager (oder an der Einspannung) überprüft werden.
- (2) Die Temperatur von Steifen θ_r wird nach 4.3.4.2.2 unter Berücksichtigung ihres eigenen Profilfaktors A_r/V_r berechnet.
- (3) Die örtliche Tragfähigkeit des Stahlquerschnitts am Auflager (oder an der Einspannung) ist gleich dem kleineren Wert von Beultragfähigkeit oder Quetschlast.
- (4) Für die Berechnung des Beulwiderstandes darf auf jeder Seite der Steife maximal eine Breite des Stegs von 15 ε e_w (siehe Bild E.3) zu dem effektiven Querschnitt hinzugerechnet werden. Der für die Berechnung der Beultragfähigkeit benötigte bezogene Schlankheitsgrad $\overline{\lambda}_{\theta}$ errechnet sich wie folgt:

$$\overline{\lambda}_{\theta} = \overline{\lambda} \cdot \max\{(k_{V,\theta W}/k_{E,\theta W})^{0.5}; (k_{V,\theta \Gamma}/k_{E,\theta \Gamma})^{0.5}\}$$
(E.9)

Dabei ist

 $k_{{\scriptscriptstyle E}, heta}$ und $k_{{\scriptscriptstyle y}, heta}$ in Tabelle 3.2 gegeben;

 $\overline{\lambda}$ der relative Schlankheitsgrad der Steife mit den angeschlossenen Teilen des Steges nach Bild E.3 bei Raumtemperatur.

ε wird nach EN 1993-1-2, 4.2.2, berechnet.

(5) Der Bemessungswert der Quetschlast $R_{_{ar{h},v,Rd}}$ der Steifen berechnet sich wie folgt:

$$R_{f_{i,y,Rd}} = [s_{s} + 5(e_{1} + r)]e_{w} f_{ay,\theta w}/\gamma_{M,f_{i},a} + A_{r} f_{ay,\theta r}/\gamma_{M,f_{i},a}$$
 (E.10)

Dabei ist

 $f_{_{qy,\theta_w}}$ und $f_{_{qy,\theta_r}}$ das maximale Spannungsniveau von Stahl bei einer Stegtemperatur θ_w , bzw. bei der Temperatur der Steife θ_r ;

r entspricht dem Ausrundungsradius bei Walzquerschnitten und $a\sqrt{2}$ bei Kehlnähten, wobei a das Wurzelmaß der Kehlnaht eines geschweißten Querschnitts ist.

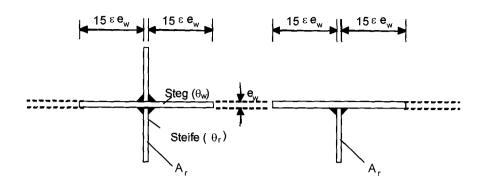


Bild E.3 — Steifen an einem Zwischenauflager


E.4 Querkrafttragfähigkeit

(1) Für den Nachweis der Querkrafttragfähigkeit von Verbundträgern dürfen die Regeln der EN 1994-1-1, 6.2.2, verwendet werden, wenn E_a , f_{ay} und γ_a durch $E_{a,\theta}$, $f_{ay,\theta}$ bzw. $\gamma_{M,f,a}$ nach Tabelle 3.2 und 2.3 (1)P ersetzt werden.

Anhang F (informativ)

Berechnungsverfahren für die positive und negative Momententragfähigkeit kammerbetonierter Verbundträger mit Betondecke bei Brandbeanspruchung nach Einheits-Temperaturzeitkurve von unten

F.1 Reduzierter Querschnitt für die positive Momententragfähigkeit $\mathbf{M}_{\mathrm{fi},\mathrm{Rd}^+}$

ANMERKUNG

- (A) Beispiel für die Spannungsverteilung im Beton;
- (B) Beispiel für die Spannungsverteilung im Stahl

Bild F.1 — Berechnung der positiven Biegemomententragfähigkeit

(1) Der Querschnitt der Betondecke wird nach Bild F.1 reduziert. Der Bemessungswert der Betondruckfestigkeit wird unabhängig von der Feuerwiderstandsklasse zu $f_c/\gamma_{M,fl,c}$ angenommen. In Tabelle F.1 ist die Reduzierung der Betondeckendicke $h_{c,fl}$ in Abhängigkeit von der Feuerwiderstandsklasse angegeben.

Tabelle F.1 — Dickenreduzierung $h_{c,\hat{\mu}}$ der Betondecke

Feuerwiderstandsklasse	Dickenreduzierung der Betondecke $h_{c,fi}$ mm
R 30	10
R 60	20
R 90	30
R 120	40
R 180	55

- (2) Für andere Betondeckensysteme gelten die folgenden Regeln:
- für Stahltrapezprofile (siehe Bild 1.1), die quer zu dem Träger verlaufen, darf die Dickenreduzierung $h_{c,f}$ nach Tabelle F.1 ab der Oberkante des Stahlblechs angerechnet werden (Bild F.2.a);
- für hinterschnittene Profile (siehe Bild 1.1), die quer zum Träger verlaufen, darf die Dickenreduzierung $h_{c,fi}$ nach Tabelle F.1 ab der Unterkante des Stahlblechs angerechnet werden. Jedoch darf der Wert $h_{c,fi}$ nicht kleiner als die Höhe des Profilblechs sein (Bild F.2.b);
- werden Beton-Halbfertigteildecken verwendet, darf die Dickenreduzierung $h_{c,fi}$ nach Tabelle F.1 ab der Unterkante der Betondecke angerechnet werden. Sie darf aber nicht kleiner sein als die Höhe der Fugen zwischen den Fertigteilen, da dort keine Druckspannungen übertragen werden können (Bild F.2.c);
- für hinterschnittene Profile, die parallel zu dem Träger verlaufen, wird die Dickenreduzierung $h_{c,fi}$ nach Tabelle F.1 ab der Unterkante des Stahlblechs angerechnet:
- für Trapezprofile, die parallel zu dem Träger verlaufen, darf die Dickenreduzierung $h_{c,f}$ nach Tabelle F.1 auf die effektive Höhe der Decke $h_{e\!f\!f}$ nach D.4 und Bild 4.1 (siehe F.2 d) bezogen werden.

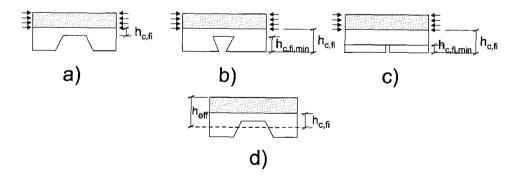


Bild F.2 — Dickenreduzierung $h_{c,\mathrm{fi}}$ für verschieden Typen von Verbunddecken

(3) Die Temperatur θ_c der Betonschicht $h_{c,\hat{\mu}}$ direkt über dem oberen Flansch darf mit 20 °C angesetzt werden.

(4) Die wirksame Breite des oberen Flansches vom Stahlquerschnitt (b – $2b_{\rm fi}$) ist abhängig von der Feuerwiderstandsklasse; der Bemessungswert der Streckgrenze des Stahles darf jedoch mit $f_{ay}/\gamma_{M,fi,a}$ angenommen werden. Tabelle F.2 enthält die Reduktionswerte für die Flanschbreite b_{fi} in Abhängigkeit von der Feuerwiderstandsklasse.

Tabelle F.2 — Breitenreduzierung b_{fi} des oberen Flansches

Feuerwiderstandsklasse	Breitenreduzierung b_{fi} des oberen Flansches mm
R 30	(e _f /2) + (b - b _c) / 2
R 60	(e _f / 2) + 10 + (b - b _c) / 2
R 90	$(e_{\rm f}/2) + 30 + (b - b_{\rm c})/2$
R 120	$(e_f/2) + 40 + (b - b_c)/2$
R 180	(e _f / 2) + 60 + (b - b _c) / 2

(5) Der Steg wird in einen oberen Teil der Höhe $h_{\rm h}$ und einen unteren Teil der Höhe h_{ℓ} unterteilt. Die Höhe h_{ℓ} ergibt sich für die verschiedenen Feuerwiderstandsklassen aus der folgenden Gleichung:

$$h_{r} = a_{1} / b_{c} + a_{2} e_{w} / (b_{c} h)$$

Die Parameter a_1 und a_2 sind für $h \mid b_c \le 1$ oder für $h \mid b_c \ge 2$ in Tabelle F.3 angegeben.

Die Höhe des unteren Teils $h_{\rm c}$ ist in Tabelle F.3 für 1 < $h/b_{\rm c}$ < 2 direkt angegeben.

	Feuerwider-	a ₁	a ₂	$h_{\ell, min}$
	standsklasse	mm²	mm²	mm
	R 30	3 600	0	20
	R 60	9 500	20 000	30
<i>h b</i> _c ≤ 1	R 90	14 000	160 000	40
	R 120	23 000	180 000	45
	R 180	35 000	400 000	55
	R 30	3 600	0	20
	R 60	9 500	0	30
$h/b_{\rm c} \ge 2$	R 90	14 000	75 000	40
	R 120	23 000	110 000	45
	R 180	35 000	250 000	55
	R 30	h _e = 3 60	00 / b _c	20
	R 60	$h_{\ell} = 9500 / b_{\rm c} + 20000$) (e _w / b _c h) (2 - h / b _c)	30
1 < h / b _c < 2	R 90	$h_{\ell} = 14000 / b_{c} + 1$	75 000 (e _w / b _c h)	40
		+ 85 000 (e _w / b	o _c h) (2 - h / b _c)	
	R 120	$h_{\ell} = 23\ 000\ /\ b_{c} + 1$	45	
		+ 70 000 (e _w / b		
	R 180	$h_{\ell} = 35000/b_{\rm c} + 2$	55	
		+ 150 000 (e _w / l	b _c h) (2 - h / b _c)	

(6) Die Höhe $h_{_\ell}$ des unteren Stegabschnittes ist in der Regel mindestens gleich $h_{_\ell, \min}$ nach Tabelle F.3 zu wählen.

(7) Für den oberen Stegabschnitt der Höhe h_h wird der Bemessungswert der Streckgrenze zu $f_{ay}/\gamma_{M,fi,a}$ angenommen. Für den unteren Teil h_{ℓ} hängt der Bemessungswert der Streckgrenze vom Abstand x zum oberen Stegabschnitt ab (siehe Bild F.1). Die reduzierte Streckgrenze an der Stelle h_{ℓ} ergibt sich aus:

$$f_{ay,x} = f_{ay} \left[1 - x \left(1 - k_a \right) / h_{\ell} \right] \tag{F.1}$$

Dabei ist

 k_a der Reduktionsfaktor für die Streckgrenze im unteren Flansch nach (8). Dies führt zu einer trapezförmigen Spannungsverteilung über die Höhe h_ρ .

(8) Die Fläche des unteren Flansches des Stahlprofils bleibt unverändert. Die Streckgrenze wird mit Faktor k_a nach Tabelle F.4 reduziert. Der Reduktionsfaktor k_a wird durch die Minimal- und Maximalwerte der Tabelle begrenzt.

Tabelle F.4 — Reduktionsfaktor k_a für die Streckgrenze im unteren Flansch mit $a_0 = (0.018 e_f + 0.7)$

Feuerwiderstandsklasse	Reduktionsfaktor k _a	k _{a,min}	k _{a,max}
R 30	$[(1,12) - (84 / b_c) + (h / 22b_c)]a_0$	0,5	0,8
R 60	$[(0,21) - (26 / b_c) + (h / 24b_c)]a_0$	0,12	0,4
R 90	$[(0,12) - (17/b_c) + (h/38b_c)]a_0$	0,06	0,12
R 120	$[(0,1) - (15/b_c) + (h/40b_c)]a_0$	0,05	0,10
R 180	$[(0,03) - (3 / b_c) + (h / 50b_c)]a_0$	0,03	0,06

(9) Die Streckgrenze der Bewehrungsstäbe sinkt mit ihrer Temperatur. Ihr Reduktionsfaktor k_r ist in Tabelle F.5 in Abhängigkeit von der Lage des Bewehrungsstabes und von der Feuerwiderstandsklasse angegeben. Der Reduktionsfaktor k_r wird durch die Mindest- und Höchstwerte in der Tabelle F.5 begrenzt.

Tabelle F.5 — Reduktionsfaktor k, der Streckgrenze eines Bewehrungsstabes

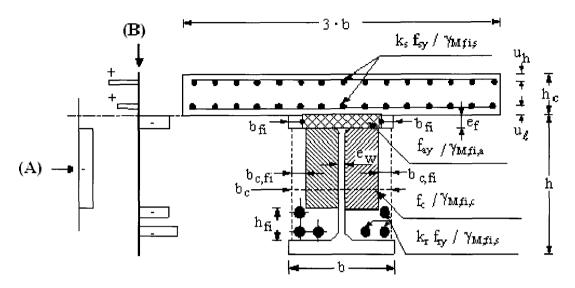
$k_{\rm r} = (ua_3 + a_4)a_5 / \sqrt{(A_{\rm m}/V)}$			k _{r,min}	k _{r,max}	
Feuerwiderstandsklasse	a ₃	a ₄	a ₅	_	
R 30	0,062	0,16	0,126		
R 60	0,034	- 0,04	0,101	0,1	1
R 90	0,026	- 0,154	0,090]	
R 120	0,026	- 0,284	0,082		
R 180	0,024	- 0,562	0,076]	

mit

$$A_{\rm m} = 2h + b_{\rm c} \qquad \qquad \text{mm}$$

$$V = h \cdot b_{\rm c} \qquad \qquad \text{mm}^2$$

$$u = 1 / [(1/u_i) + (1/u_{si}) + 1/(b_c - e_w - u_{si})]$$
 (F.2)


Dabei ist

u_i der Achsabstand [mm] vom Bewehrungsstab zur Innenseite des Flansches und

 u_{si} der Achsabstand [mm] vom Bewehrungsstab zur Betonoberfläche (siehe Bild F.1).

- (10) Die Betondeckung der Bewehrungsstäbe sollte 5.1(5) entsprechen.
- (11) Die Querkrafttragfähigkeit des Stahlsteges darf über die Verteilung des Bemessungswertes der Streckgrenze nach (7) bestimmt werden. Wenn $V_{fi,Sd} \ge 0.5 \ V_{fi,pl,Rd}$ ist, darf die Tragfähigkeit des bewehrten Betons berücksichtigt werden.

F.2 Reduzierter Querschnitt für die negative Momententragfähigkeit $\mathbf{M}_{_{\mathbf{fi.Rd}^{-}}}$

ANMERKUNG

- (A) Beispiel für die Spannungsverteilung im Beton;
- (B) Beispiel für die Spannungsverteilung im Stahl

Bild F.3 — Berechnung der negativen Biegemomententragfähigkeit

(1) Die Streckgrenze der Bewehrungsstäbe in der Platte wird mit dem Reduktionsfaktor k_s nach Tabelle F.6 in Abhängigkeit von der Feuerwiderstandsklasse und der Lage der Bewehrungsstäbe multipliziert. Der Reduktionsfaktor k_s ist durch die Mindest- und Höchstwerte in Tabelle F.6 begrenzt.

Tabelle F.6 — Reduktionsfaktor k_s für die Streckgrenze der Bewehrungsstäbe in der Betondecke mit dem Achsabstand u [mm] gleich u_t bzw. $(h_c - u_h)$ zur Deckenunterkante (siehe Bild F.3)

Feuerwiderstands- klasse	Reduktionsfaktor $k_{\rm s}$	K _{s,min}	K _{s,max}	
R 30	1			
R 60	$(0,022 \ u) + 0,34$,	
R 90	(0,0275 u) - 0,1	0	1	
R 120	(0,022 <i>u</i>) - 0,2			
R 180	(0,018 <i>u</i>) - 0,26	<u></u>		

- (2) Für den oberen Flansch des Stahlquerschnittes gilt F.1(4).
- (3) Der Querschnitt des Kammerbetons wird nach Bild F.3 reduziert, während der Bemessungswert der Betondruckfestigkeit unabhängig von der Feuerwiderstandsklasse zu $f_c/\gamma_{M,fi,c}$ angenommen wird. Die Reduktionswerte für die Breite $b_{c,fi}$ und die Höhe h_{fi} des Kammerbetons enthält Tabelle F.7. Die Breitenbzw. Höhenreduktionen sind durch die Mindest- und Höchstwerte der Tabelle F.7 begrenzt.

Tabelle F.7 — Reduktion des Kammerbetons

Feuerwiderstandsklasse	h _e mm	h _{fi,min} mm	b _{c,fi} mm	b _{c,fi,min}
R 30	25	25	25	25
R 60	165 - (0,4b _c) - 8 (h / b _c)	30	60 - (0,15b _c)	30
R 90	220 - (0,5b _c) - 8 (h / b _c)	45	70 - (0,1 <i>b</i> _c)	35
R 120	290 - (0,6b _c) - 10 (h / b _c)	55	75 - (0,1 <i>b</i> _c)	45
R 180	360 - (0,7b _c) - 10 (h / b _c)	65	85 - (0,1b _c)	55

- (4) Für die Bewehrungsstäbe im Kammerbeton gilt F.1(9).
- (5) Die Betondeckung der Bewehrungsstäbe sollte 5.1(5) entsprechen.
- (6) In den Bereichen mit negativen Biegemomenten wird angenommen, dass die Querkraft allein von dem Steg des Stahlquerschnittes, der bei der negativen Momententragfähigkeit nicht angerechnet wird, aufgenommen wird.
- (7) Die Querkrafttragfähigkeit des Stahlsteges darf über die Verteilung des Bemessungswertes der Streckgrenze nach F.1, (7) bestimmt werden.

F.3 Anwendungsbereich

(1) Die Mindestwerte der Tabelle F.8 für die Höhe h des Stahlquerschnitts, die Breite $b_{\rm c}$ und die Fläche h $b_{\rm c}$ sind in der Regel einzuhalten.

ANMERKUNG Die Breite b_c ist der kleinere Wert entweder der Breite b des unteren Flansches oder der Breite des Kammerbetons einschließlich der Stegdicke e_w (siehe Bild F.1).

Tabelle F.8 — Mindestquerschnittsabmessungen

Feuerwiderstands- klasse	Mindestprofilhöhe h und Mindestbreite $b_{\rm c}$ mm	Mindestfläche h b _c mm²
R 30	120	17 500
R 60	150	24 000
R 90	170	35 000
R 120	200	50 000
R 180	250	80 000

(2) Die Flanschdicke $e_{\rm f}$ muss in der Regel kleiner als 1/8 der Höhe h des Stahlquerschnitts sein.

Anhang G (informativ)

Berechnungsverfahren für den Feuerwiderstand kammerbetonierter Verbundstützen bei Biegeknicken um die schwache Achse und allseitiger Brandbeanspruchung nach Einheits-Temperaturzeitkurve

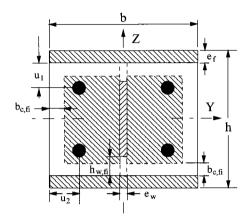


Bild G.1 — Reduzierter Querschnitt für die Bauteilbemessung im Brandfall

G.1 Einleitung

(1) Dieses Berechnungsverfahren beruht auf den verbindlichen Regeln und Anwendungsregeln nach 4.3.5.1; es wurde jedoch lediglich für Biegung um die z-Achse entwickelt, d. h.:

$$N_{fl,Rd,z} = \chi_z N_{fl,pl,Rd}$$
 (G.1)

- (2) Zur Berechnung des Bemessungswertes der plastischen Grenznormalkraft unter zentrischem Druck $N_{fi,pl,Rd}$ und der wirksamen Biegesteifigkeit $(EI)_{fi,eff,z}$ im Brandfall wird der Querschnitt in vier Teilquerschnitte unterteilt:
- Flansche des Stahlquerschnittes;
- Steg des Stahlquerschnittes;
- Kammerbeton und
- Bewehrungsstäbe.
- (3) Jeder Teilquerschnitt darf auf der Grundlage abgeminderter charakteristischer Festigkeiten, abgeminderter Elastizitätsmoduli und verringerter Querschnittsflächen in Abhängigkeit der Feuerwiderstandsklassen R 30, R 60, R 90 oder R 120 berechnet werden.
- (4) Den Bemessungswert der plastischen Grenznormalkraft unter zentrischem Druck und die wirksame Biegesteifigkeit des Querschnittes ergeben sich nach 4.3.5.1, (4) und (5) mittels gewichteter Addition der entsprechenden Werte der vier Teilquerschnitte.
- (5) Die Festigkeits- und Verformungseigenschaften von Baustahl und Beton bei erhöhten Temperaturen stimmen mit den entsprechenden verbindlichen Regeln und Anwendungsregeln nach 3.1 und 3.2 überein.

G.2 Flansche des Stahlquerschnittes

(1) Die durchschnittliche Flanschtemperatur darf wie folgt bestimmt werden:

$$\theta_{f,t} = \theta_{o,t} + k_t \left(A_m / V \right) \tag{G.2}$$

Dabei ist

t die Branddauer, min;

 A_m/V der Profilfaktor, m⁻¹, mit $A_m = 2(h + b)$, m und $V = h \cdot b$, m²;

 θ_{ot} die Temperatur nach Tabelle G.1, °C;

k, der empirische Koeffizient nach Tabelle G.1.

Tabelle G.1 — Parameter zur Bestimmung der Flanschtemperatur

Feuerwiderstandsklasse	$oldsymbol{ heta}_{o,t}$	$k_{\scriptscriptstyle t}$
	°C	m°C
R 30	550	9,65
R 60	680	9,55
R 90	805	6,15
R 120	900	4,65

(2) Unter der Temperatur $\theta=\theta_{f,t}$ ergeben sich das zugehörige maximale Spannungsniveau und der Elastizitätsmodul aus:

$$f_{ay,f,t} = f_{ay,f} k_{y,\theta}$$
 (G.3)

und

$$E_{a,f,t} = E_{a,f} k_{E,\theta}$$
 (G.4)

mit $k_{y,\theta}$ und $k_{E,\theta}$ nach 3.2.1, Tabelle 3.2.

(3) Der Bemessungswert der plastischen Grenznormalkraft unter zentrischem Druck und die Biegesteifigkeit der Flansche des Stahlquerschnittes im Brandfall ergeben sich aus:

$$N_{fi,pl,Rd,f} = 2(b e_f f_{ay,f,t}) / \gamma_{M,fi,a}$$
(G.5)

und

$$(EI)_{fi,f,z} = E_{a,f,z} \left(e_f b^3 \right) / 6$$
 (G.6)

G.3 Steg des Stahlquerschnittes

(1) Der Teil des Steges mit der Höhe $h_{w,fi}$, gemessen von der Innenkante des Flansches, darf vernachlässigt werden (siehe Bild G.1). Er ergibt sich zu:

$$h_{wf} = 0.5 \left(h - 2e_f \right) \left(1 - \sqrt{1 - 0.16 \left(H_t / h \right)} \right) \tag{G.7}$$

mit H_{i} nach Tabelle G.2.

Tabelle G.2 — Parameter für die Höhenreduzierung des Steges

Feuerwiderstandsklasse	H_{t}
	mm
R 30	350
R 60	770
R 90	1100
R 120	1 250

(2) Das maximale Spannungsniveau ergibt sich aus:

$$f_{ay,w,t} = f_{ay,w} \sqrt{1 - (0.16 H_t/h)}$$
 (G.8)

(3) Der Bemessungswert der plastischen Grenznormalkraft unter zentrischem Druck und die Biegesteifigkeit des Stahlprofilsteges im Brandfall ergeben sich zu:

$$N_{fi,pl,Rd,w} = \left[e_w \left(h - 2e_f - 2h_{w,fi} \right) f_{ay,w,i} \right] / \gamma_{M,fi,a}$$
(G.9)

$$(EI)_{fi,w,z} = \left[E_{a,w} \left(h - 2e_f - 2h_{w,fi} \right) e_w^3 \right] / 12$$
 (G.10)

G.4 Kammerbeton

(1) Der äußere Bereich des Betons mit der Breite $b_{c,fi}$ ist in der Regel in der Berechnung zu vernachlässigen (siehe Bild G.1). Die Dicke $b_{c,fi}$ ist in Tabelle G.3 mit dem Profilfaktor für den ganzen Verbundquerschnitt A_m/V angegeben.

Tabelle G.3 -- Breitenreduzierung der Betonfläche

Feuerwiderstandsklasse	$b_{c,fi}$ mm
R 30	4,0
R 60	15,0
R 90	$0.5 (A_m/V) + 22.5$
R 120	$2,0 (A_m/V) + 24,0$

(2) Die Durchschnittstemperatur im Beton $\theta_{c,t}$ ist in Abhängigkeit vom Profilfaktor A_m/V für den ganzen Verbundquerschnitt und von der Feuerwiderstandsklasse in Tabelle G.4 angegeben.

Tabelle G.4 — Mittlere Betontemperatur

R	30	R 60 R 90		R 60		90	R 1	120
A_m/V	$oldsymbol{ heta}_{c,t}$	A_m/V	$ heta_{c,t}$	A_m/V	$ heta_{c,t}$	A_m/V	$ heta_{c,t}$	
m ⁻¹	°C	m ⁻¹	°C	m ⁻¹	°C	m ⁻¹	°C	
4	136	4	214	4	256	4	265	
23	300	9	300	6	300	5	300	
46	400	21	400	13	400	9	400	
_	-	50	600	33	600	23	600	
_	_	-	-	54	800	38	800	
_	_	-	-	-	_	41	900	
_	_	_	_	_	-	43	1 000	

(3) Unter der Temperatur $\theta = \theta_{c,t}$ ergibt sich der Sekantenmodul des Betons zu:

$$E_{c,sec,\theta} = f_{c,\theta} / \varepsilon_{cu,\theta} = f_c \ k_{c,\theta} / \varepsilon_{cu,\theta}$$
 (G.11)

Dabei ist

 $k_{c, heta}$ und $arepsilon_{cu, heta}$ nach 3.2.2, Tabelle 3.3.

(4) Der Bemessungswert der plastischen Grenznormalkraft unter zentrischem Druck und die Biegesteifigkeit des Betons im Brandfall ergeben sich zu:

$$N_{fi,pl,Rd,c} = 0.86 \left\{ \left(\left(h - 2e_f - 2b_{c,fi} \right) \left(b - e_w - 2b_{c,fi} \right) \right) - A_s \right\} f_{c,\theta} / \gamma_{M,fi,c}$$
 (G.12)

Dabei ist

 $A_{\rm s}$ der Querschnitt der Bewehrungsstäbe und 0,86 ein Anpassungsfaktor.

$$(EI)_{fi,c,z} = E_{c,\sec,\theta} \left[\left((h - 2e_f - 2b_{c,fi}) \left((b - 2b_{c,fi})^3 - e_w^3 \right) / 12 \right\} - I_{s,z} \right]$$
(G.13)

Dabei ist

 $I_{s,z}$ das Trägheitsmoment der Bewehrungsstäbe bezogen auf den Schwerpunkt Z des Verbundquerschnittes.

G.5 Bewehrungsstäbe

(1) Der Reduktionsfaktor $k_{y,i}$ für die Streckgrenze und der Reduktionsfaktor $k_{\varepsilon,i}$ für den Elastizitätsmodul der Bewehrungsstäbe werden in Abhängigkeit von der Feuerwiderstandsklasse und dem geometrischen Mittel der Achsabstände u der Bewehrung von den Außenrändern des Betons definiert (siehe Tabellen G.5 und G.6).

Tabelle G.5 — Reduktionsfaktor $k_{v,t}$ für die Streckgrenze f_{sv} der Bewehrungsstäbe

Feuerwider-	Achsabstände in mm							
standsklasse	40	40 45 50 55 6						
R 30	1	1	1	1	1			
R 60	0,789	0,883	0,976	1	1			
R 90	0,314	0,434	0,572	0,696	0,822			
R 120	0,170	0,223	0,288	0,367	0,436			

Tabelle G.6 — Reduktionsfaktor $k_{\rm E,t}$ für den Elastizitätsmodul $E_{\rm s}$ der Bewehrungsstäbe

Feuerwider-		Achsabstände in mm					
standsklasse	40	45	50	55	60		
R 30	0,830	0,865	0,888	0,914	0,935		
R 60	0,604	0,647	0,689	0,729	0,763		
R 90	0,193	0,283	0,406	0,522	0,619		
R 120	0,110	0,128	0,173	0,233	0,285		

(2) Das geometrische Mittel der Achsabstände u_1 und u_2 ergibt sich zu:

$$u = \sqrt{u_1 \cdot u_2} \tag{G.14}$$

Dabei ist

 u_1 der Achsabstand des äußeren Bewehrungsstabes vom inneren Flanschrand, mm;

 u_2 der Achsabstand des äußeren Bewehrungsstabes von der Betonoberfläche, mm.

ANMERKUNG für $(u_1 - u_2) > 10$ mm: $u = \sqrt{u_2(u_2 + 10)}$,

für
$$(u_2 - u_1) > 10 \text{ mm}$$
: $u = \sqrt{u_1(u_1 + 10)}$.

DIN EN 1994-1-2:2010-12

EN 1994-1-2:2005 + AC:2008 (D)

(3) Der Bemessungswert der plastischen Grenznormalkraft unter zentrischem Druck und die Biegesteifigkeit der Bewehrungsstäbe im Brandfall ergeben sich zu:

$$N_{f_{i,pl,Rd,s}} = A_s k_{v,t} f_{sv} / \gamma_{M,f_{i,s}}$$
 (G.15)

$$(EI)_{f(s,z)} = k_{E,t} E_{s,t} I_{s,z}$$
 (G.16)

G.6 Berechnung der Grenznormalkraft unter zentrischem Druck bei erhöhten Temperaturen

(1) Nach G.1, (4) ergeben sich der Bemessungswert der plastischen Grenznormalkraft unter zentrischem Druck und die wirksame Biegesteifigkeit des Querschnittes im Brandfall zu:

$$N_{fi,pl,Rd} = N_{fi,pl,Rd,f} + N_{fi,pl,Rd,w} + N_{fi,pl,Rd,c} + N_{fi,pl,Rd,s}$$
(G.17)

$$(EI)_{fi,eff,z} = \varphi_{f,\theta} (EI)_{fi,f,z} + \varphi_{w,\theta} (EI)_{fi,w,z} + \varphi_{c,\theta} (EI)_{fi,c,z} + \varphi_{s,\theta} (EI)_{fi,s,z}$$
(G.18)

Dabei ist

 $arphi_{i heta}$ der Reduktionskoeffizient zur Berücksichtigung thermischer Zwängungsspannungen.

Die Werte für $\, \varphi_{i \theta} \,$ sind in Tabelle G.7 angegeben.

Tabelle G.7 - Reduktionskoeffizienten für die Biegesteifigkeit

Feuerwiderstandsklasse	$oldsymbol{arphi}_{f, heta}$	$oldsymbol{arphi}_{w, heta}$	$oldsymbol{arphi}_{c, heta}$	$oldsymbol{arphi}_{s, heta}$
R 30	1,0	1,0	0,8	1,0
R 60	0,9	1,0	0,8	0,9
R 90	0,8	1,0	0,8	0,8
R 120	1,0	1,0	0,8	1,0

(2) Die Euler'sche Knicklast oder kritische Normalkraft ergibt sich zu:

$$N_{fi,cr,z} = \pi^2 \left(EI \right)_{fi,eff,z} / \ell_{\theta}^2 \tag{G.19}$$

Dabei ist

 $\ell_{\, heta}$ die Knicklänge der Stütze im Brandfall.

(3) Der bezogene Schlankheitsgrad ergibt sich zu:

$$\overline{\lambda}_{\theta} = \sqrt{N_{fl,pl,R}/N_{fl,cr,z}} \tag{G.20}$$

Dabei ist

 $N_{fl,pl,R}$ der Wert $N_{fl,pl,Rd}$ nach (1), wenn die Beiwerte $\gamma_{M,fl,a}$, $\gamma_{M,fl,c}$ und $\gamma_{M,fl,s}$ gleich 1,0 gesetzt werden.

(4) Der Abminderungsfaktor χ_z darf mit $\overline{\lambda}_{\theta}$ und der Knickspannungskurve c nach ENV 1993-1-1 berechnet werden und der Bemessungswert der Grenznormalkraft unter zentrischem Druck ergibt sich zu:

$$N_{f_{i},Rd,z} = \chi_{z} N_{f_{i},p_{i},Rd}$$
 (G.21)

(5) Die Bilder G.2 und G.3 geben Bemessungswerte der Grenznormalkraft unter zentrischem Druck $N_{fl,Rd,z}$ in Abhängigkeit von der Knicklänge ℓ_{θ} für die Profilreihe HEA mit der Stahlgüte S355, Beton C40/50 und Betonstahl S500 für die Feuerwiderstandsklassen R 60, R 90 und R 120 an.

Diese Bemessungsdiagramme basieren auf den Teilsicherheitsbeiwerten für Werkstoffe

$$\gamma_{M,fi,a} = \gamma_{M,fi,s} = \gamma_{M,fi,c} = 1,0$$
.

G.7 Exzentrizität der Belastung

(1) Für mit einer Exzentrizität δ beanspruchte Stützen darf der Bemessungswert der Grenznormalkraft $N_{fi,Rd,\delta}$ wie folgt berechnet werden:

$$N_{\theta,Rd\delta} = N_{\theta,Rd} \left(N_{Rd\delta} / N_{Rd} \right) \tag{G.22}$$

Dabei ist

 N_{Rd} der Bemessungswert der Grenznormalkraft unter zentrischem Druck;

 $N_{Rd,\delta}$ der Bemessungswert der Grenznormalkraft unter exzentrischem Druck;

beide für Normaltemperatur nach EN 1994-1-1.

(2) Die Resultierende der exzentrischen Last muss in der Regel innerhalb des Verbundstützenquerschnittes liegen.

G.8 Anwendungsbereich

(1) Dieses Berechnungsverfahren darf nur unter folgenden Bedingungen angewendet werden:

	Knicklänge $\ell_{ heta}$	≤ 13,5b
230 mm ≤	Höhe des Querschnittes h	≤ 1 100 mm
230 mm ≤	Breite des Querschnittes b	≤ 500 mm
1 % ≤	Bewehrungsgrad	≤ 6 %
	Feuerwiderstandsklasse	≤ 120 min

- (2) Zusätzlich zu (1) ist in der Regel die Mindestquerschnittsabmessung b oder h für die Feuerwiderstandsklassen R 90 und R 120 auf 300 mm zu begrenzen.
- (3) Für das Berechnungsverfahren nach den Regeln (1), (2) und (3) ist in der Regel die maximale Knicklänge ℓ_{θ} in folgenden Fällen auf 10 · b zu begrenzen:
- bei R 60, für 230 mm $\leq b$ < 300 mm oder für h/b >3 und
- bei R 90 und R 120 für h/b > 3.

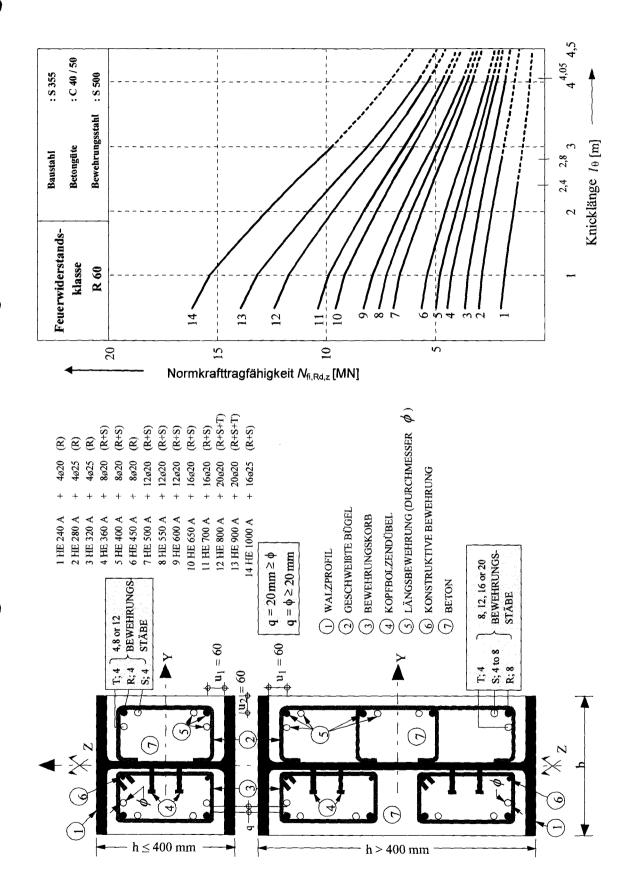


Bild G.2 — Parameter für die Normalkrafttragfähigkeit von kammerbetonierten Stahlprofilen

Bild G.3.a — Normalkrafttragfähigkeit von kammerbetonierten Stahlprofilen für R 60

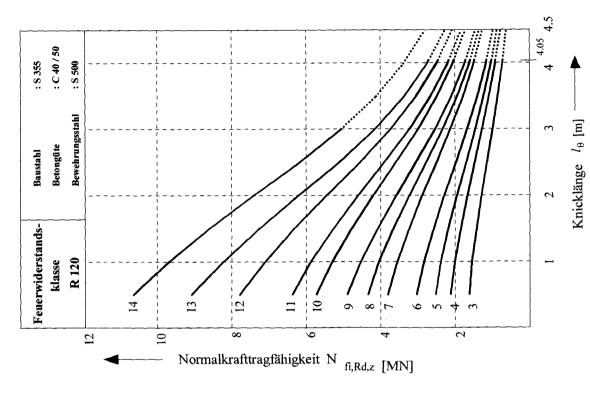


Bild G.3.c — Normalkrafttragfähigkeit von kammerbetonierten Stahlprofilen für R 120

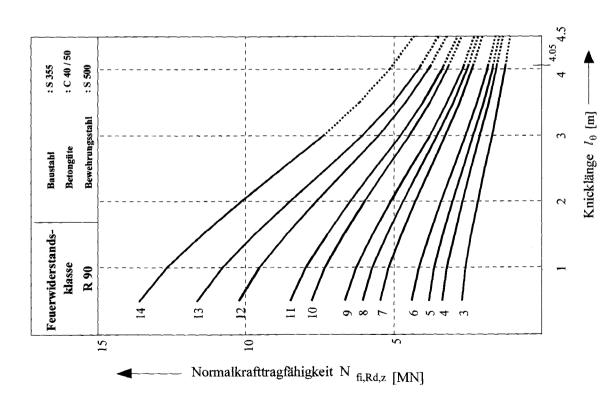


Bild G.3.b — Normalkrafttragfähigkeit von kammerbetonierten Stahlprofilen für R 90

Anhang H (informativ)

Vereinfachtes Berechnungsverfahren für betongefüllte Hohlprofile mit allseitiger Brandbeanspruchung nach Einheits-Temperaturzeitkurve

H.1 Einleitung

- (1) Das Berechnungsverfahren zur Bestimmung der Bemessungswerte der Grenznormalkraft betongefüllter Hohlprofilstützen unter zentrischem Druck im Brandfall gliedert sich in zwei unabhängige Schritte:
- Berechnung des Temperaturfeldes im Verbundquerschnitt für eine bestimmte Branddauer und
- Berechnung des Bemessungswertes der Grenznormalkraft unter zentrischem Druck $N_{fi,Rd}$ unter dem vorher ermittelten Temperaturfeld.

H.2 Temperaturfeld

- (1) Die Temperaturfeldberechnung muss in Übereinstimmung mit 4.4.2 erfolgen.
- (2) Bei der Berechnung der Temperaturverteilung darf der thermische Widerstand zwischen der Stahloberfläche an der Innenseite und dem Beton vernachlässigt werden.

H.3 Bemessungswert der Grenznormalkraft unter zentrischem Druck bei erhöhten Temperaturen

(1) Der Bemessungswert der Grenznormalkraft unter zentrischem Druck $N_{fi,Rd}$ für betongefüllte Hohlprofile ergibt sich zu:

$$N_{fi,Rd} = N_{fi,cr} = N_{fi,pl,Rd}$$
 (H.1)

mit

$$N_{f,cr} = \pi^2 \left[E_{a,\theta,\sigma} I_a + E_{c,\theta,\sigma} I_c + E_{s,\theta,\sigma} I_s \right] / \ell_{\theta}^2$$
(H.2)

und

$$N_{fl,pl,Rd} = A_a \sigma_{a,\theta} / \gamma_{M,fl,a} + A_c \sigma_{c,\theta} / \gamma_{M,fl,c} + A_s \sigma_{s,\theta} / \gamma_{M,fl,s}$$
(H.3)

Dabei ist

 N_{ficr} die Euler'sche Knicklast oder Normalkraft;

 $N_{f_{i},p_{i},Rd}$ der Bemessungswert der plastischen Grenznormalkraft des Gesamtquerschnittes unter zentrischem Druck;

 ℓ_{θ} die Knicklänge im Brandfall;

- $E_{i,\theta,\sigma}$ Tangentenmodul der Spannungs-Dehnungsbeziehungen für den Werkstoff i bei der Temperatur θ und der Spannung $\sigma_{i,\theta}$ (siehe Tabelle 3.1 und Bild 3.2);
- I_i Trägheitsmoment des Werkstoffes i bezogen auf die Schwerachsen y oder z des Verbundquerschnittes;
- A, Querschnittsfläche des Werkstoffs i;
- $\sigma_{i\theta}$ Spannung im Werkstoff i bei der Temperatur θ .
- (2) $E_{i,\theta,\sigma}$. I_i und A_i . $\sigma_{i,\theta}$ ergeben sich aus der Summe über alle einzelnen Elemente dy dz mit der Temperatur θ nach der Branddauer t.
- (3) Die anzusetzenden Werte $E_{i, \theta, \sigma}$ und $\sigma_{i, \theta}$ entsprechen:

$$\varepsilon_{a} = \varepsilon_{c} = \varepsilon_{s} = \varepsilon \tag{H.4}$$

Dabei ist

- ε die axiale Dehnung der Stütze;
- ε_i die axiale Dehnung des Werkstoffs i im Querschnitt.
- (4) Der Bemessungswert der Grenznormalkraft unter zentrischem Druck $N_{\beta,Rd}$ darf in Abhängigkeit der maßgebenden physikalischen Parameter in Bemessungsdiagrammen wie in den Bildern H.3 und H.4 angegeben werden.

ANMERKUNG Die übliche Vorgehensweise ist es, die Dehnung schrittweise zu erhöhen. Bei wachsender Dehnung verringern sich die Werte von $E_{i, \theta, \sigma}$ und $N_{fi, cr}$, während die Werte von $\sigma_{i, \theta}$ und $N_{fi, pl, Rd}$ größer werden. Das richtige Dehnungsniveau ist dann erreicht, wenn $N_{fi, cr} = N_{fi, pl, Rd}$ und die Bedingungen in (1) erfüllt sind.

H.4 Exzentrizität der Belastung

- (1) Die folgenden Regeln dürfen angewendet werden, wenn im Brandfall das Verhältnis von Biegemoment und Längskraft $M\!/\!N\!=\delta$ an den Stützenenden das 0,5fache der Querschnittsabmessungen b oder d nicht überschreitet.
- (2) Bei Lastexzentrizitäten δ dürfen die äquivalenten Grenznormalkräfte bei zentrischer Last N_{equ} unter Anwendung der Bemessungsdiagramme für zentrischen Druck im Brandfall wie folgt bestimmt werden:

$$N_{equ} = N_{f_i,Sd} / (\varphi_s. \varphi_\delta)$$
 (H.5)

Dabei ist

- φ_s , φ_δ die Korrekturfaktoren nach Bild H.1 und Bild H.2;
- $\ell_{\,\theta}$ die Knicklänge im Brandfall;
- b die Kantenlänge beim Quadratquerschnitt;
- d der Durchmesser beim Kreisquerschnitt;
- δ die Lastexzentrizität.

H.5 Anwendungsbereich

(1) Dieses Berechnungsverfahren darf für rechteckige oder runde Querschnitte nur unter folgenden Bedingungen angewendet werden:

	Knicklänge $\ell_{ heta}$	≤ 4,5 m
140 mm ≤	Breite b oder Durchmesser des Querschnittes	≤ 400 mm
C20/25 ≤	Betonfestigkeit	≤ C40/50
0 % ≤	Bewehrungsgrad	≤ 5 %
	Feuerwiderstandsklasse	≤ 120 min.

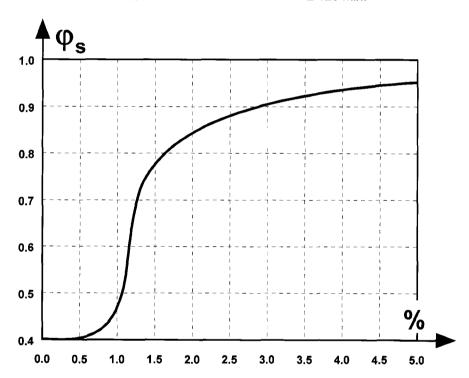


Bild H.1 — Korrekturkoeffizient ϕ_s in Abhängigkeit vom Bewehrungsgrad [%]

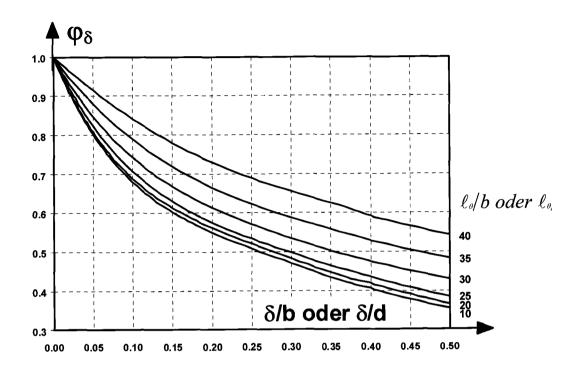


Bild H.2 — Korrekturkoeffizient $arphi_{\delta}$ in Abhängigkeit von der Exzentrizität δ

	Feuerwider- standsklasse R 60	Baustahl: Betongüte: Bewehrungsstahl: Achsabstand der Bewehrung u _s :	S 355 C30/35 S 500 : 40 mm		
Bemess. Rundrohr- A _s /(A _c +A _s) Rurve querschnitt % 1 291,1 x 4,5 1,0 2 329,9 x 5,6 1,0 3 406,4 x 6,3 1,0 4 291,1 x 4,5 4,0 5 329,9 x 5,6 4,0 6 406,4 x 6,3 4,0 Beton (A _c) Bewehrungs- Stäbe (A _s)	Ikrafttragfähigkeit [MN] ∞ ∞	1 2 3 4 4,	5		
	Knicklänge [m]				

Bild H.3 — Beispiel für ein Bemessungsdiagramm für einen Hohlprofil-Querschnitt (R 60)

Bemess. Kurve	Quadratrohr- querschnitt	A _s /(A _c +A _s) _s	Feuerwid standskla R 90		Baustahl Betongüt	te:			S 355 C30/35
1 2	200 x 6,3 300 x 7,1	1,0 1,0				ngsstahl:			S 500
3	400 x 10	1,0	Ì		Achsabs	tand der l	3ewehi	rung u_s :	40 mm
4	200 x 6,3	4,0							
5	300 x 7,1	4,0	5	· —	ī	-	i	- 	
6	400 x 10	4,0		1					}
	_	Beton (A _c)	4	,	6				
	↓Z	_		1	į		- 1		
n=b	u _s b e	Bewehrungs- Stäbe (A _s) Y	Normalkrafttragfähigkeit [MN]		3				
		1	lormalkı 1	!	2				
1=b -	u _s le				4 ************************************			Allowania samo sa sa degli de constitucio de consti	AAA dha whoolad na waan oo dhaan dhaan dhaan dhaan dhaan dhaa dhaa
+ - - - -	u _s b te	-			1 Kn	² icklänge	3 [m]	4	4,5

Bild H.4 — Beispiel für ein Bemessungsdiagramm für ein quadratisches Hohlprofil (R 90)

Anhang I (informativ)

Planung und Auswertung experimenteller Verfahren

I.1 Einleitung

- (1) Versuchsergebnisse dürfen zur Beurteilung des Brandverhaltens von Bauteilen, Teil- oder Gesamttragwerken herangezogen werden, wenn die Versuche angemessen durchgeführt wurden.
- (2) In Versuchen darf eine der möglichen Wärmeeinwirkungen nach EN 1991-1-2, Abschnitt 3 angenommen werden.
- (3) Versuchsergebnisse können zu einer umfassenden Beurteilung des Feuerwiderstandes eines Tragwerkes oder Tragwerksteiles führen.
- (4) Versuche können die Erwärmungsbedingungen, die bei einem Brand auftreten, und die entsprechenden mechanischen Einwirkungen berücksichtigen. Versuchsergebnis ist die Zeitdauer, während der das Tragwerk seine Tragfähigkeit unter gleichzeitiger Brand- und Lasteinwirkung aufrechterhält.
- (5) Versuche dürfen genauere Detailinformationen bezüglich einer oder mehrerer Stufen der oben genannten Berechnungsverfahren liefern.
- (6) Detailinformationen können die Wärmedämmung von Decken, Temperaturfelder von Querschnitten oder Versagensarten von Bauteilen betreffen.
- (7) Versuche dürfen in der Regel frühestens fünf Monate nach dem Betonieren durchgeführt werden.

I.2 Versuche für globale Beurteilungen

- (1) Die Bemessung der Prüfkörper und die aufgebrachten mechanischen Einwirkungen dürfen die Nutzungsbedingungen widerspiegeln.
- (2) Versuche, die auf Grundlage der herkömmlichen Brandbeanspruchung nach EN-Normen durchgeführt werden, dürfen im Hinblick auf die Einhaltung der zuvor genannten Regel betrachtet werden.
- (3) Die Versuchsergebnisse sind in der Regel nur für die speziellen Versuchsbedingungen und ggf. für den in EN-Normen vereinbarten Anwendungsbereich anzuwenden.

1.3 Versuche für Teilinformationen

- (1) Die Versuchskörper dürfen im Hinblick auf die Art der erwarteten Teilinformation bemessen werden.
- (2) Die Versuchsbedingungen dürfen von den Nutzungsbedingungen der Bauteile abweichen, sofern dies keinen Einfluss auf die zu erwartende Teilinformation hat.
- (3) Die Anwendung von Teilinformationen aus Versuchen ist auf die gleichen maßgebenden Parameter begrenzt, die im Versuch untersucht wurden.
- (4) Bezüglich der Wärmeübertragung sind die Ergebnisse für gleiche Querschnittsabmessungen der Bauteile und gleiche Erwärmungsbedingungen gültig.
- (5) Bezüglich der Versagensmechanismen sind die Ergebnisse für gleiche Bemessung des Tragwerkes oder Tragwerksteiles, gleiche Randbedingungen und gleiches Lastniveau gültig.
- (6) Mit Versuchsergebnissen, die in Übereinstimmung mit den oben genannten Regeln stehen, dürfen entsprechende Angaben in den Berechnungsverfahren nach 4.2, 4.3 und 4.4 ersetzt werden.