DIN V 4108-4/A1

ICS 91.120.10; 91.120.30

ARCHIV

Änderung von DIN V 4108-4:2004-07

Vornorm

Wärmeschutz und Energie-Einsparung in Gebäuden – Teil 4: Wärme- und feuchteschutztechnische Bemessungswerte, Änderung A1

Thermal insulation and energy economy in buildings – Part 4: Hygrothermal design values, Amendment A1

Isolation thermique et économie d'énergie en bâtiments immeuble – Partie 4: Valeurs de calcul hygrothermiques, Amendement A1

Gesamtumfang 7 Seiten

Normenausschuss Bauwesen (NABau) im DIN

DIN V 4108-4/A1:2006-06

— Vornorm —

Vorwort

Bereits bei Abschluss der Arbeiten zu DIN V 4108-4:2004-07 wurde vom zuständigen Arbeitsausschuss NA 005-56-92 AA "Kennwerte und Anforderungsbedingungen" des Normenausschusses Bauwesen (NABau) anerkannt, dass diese Vornorm unter stetiger Überarbeitung stehen muss, um die Entwicklung auf europäischer Ebene zu berücksichtigen und somit entsprechende Kennwerte für Produkte, die sich aus den entsprechenden Europäischen Normen ergeben, sukzessive zu integrieren.

In diesem Sinne fließen die Regelungen für den Wärmedämmputz nach DIN EN 998-1:2003-09 in diese Änderung mit ein.

Es ist zu erwarten, dass Ende 2006 weitere Europäische Normen vorliegen werden, die weitere notwendige Änderungen in der DIN V 4108-4 zur Folge haben.

Eine Vornorm ist das Ergebnis einer Normungsarbeit, das wegen bestimmter Vorbehalte zum Inhalt oder wegen des gegenüber einer Norm abweichenden Aufstellungsverfahrens vom DIN noch nicht als Norm herausgegeben wird.

Zur vorliegenden Vornorm wurde kein Entwurf veröffentlicht.

Erfahrungen mit dieser Vornorm sind erbeten

- vorzugsweise als Datei per E-Mail an <u>nabau@din.de</u> in Form einer Tabelle. Die Vorlage dieser Tabelle kann im Internet unter <u>http://www.din.de/Stellungnahme</u> abgerufen werden;
- oder in Papierform an den Normenausschuss Bauwesen (NABau) im DIN Deutsches Institut für Normung e. V., 10772 Berlin (Hausanschrift: Burggrafenstr. 6, 10787 Berlin).

— Vornorm —

Änderungen gegenüber DIN V 4108-4:2004-07

1 Zu Tabelle 2:

a) Die Bemessungswerte bei expandiertem Kork (ICB) und Holzfaserdämmstoff (WF) in Tabelle 2 beinhalten einen Feuchtezuschlag. Zusätzlich wird die Fußnote b geändert von " $\lambda = \lambda_{\rm D} \cdot 1,2$ (außer für Zeilen 5.9 und 5.10, dort ist zusätzlich die Umrechnung der Feuchte hinzuzurechnen)" auf $\lambda = \lambda_{\rm D} \cdot 1,2$ (in den Zeilen 5.9 und 5.10, ist die Umrechnung der Feuchte bereits realisiert; in der Zeile 5.9 ist die Umrechnung $\lambda = \lambda_{\rm D} \cdot 1,23$ und $\lambda = \lambda_{\rm grenz} \cdot 1,07$).

Tabelle 2 — Zeile 5 von Tabelle 1 für Wärmedämmstoffe nach harmonisierten Europäischen Normen

		Kateç	gorie I	Kateg	orie II	Richtwert der
Zeile	Stoff	Nennwert λ_{D}	Bemessungs- wert λ^{b}	Grenzwert λ _{grenz} c	Bemessungs- wert λ ^b	Wasserdampf- Diffusionswider- standszahl ^a μ
5.9	Expandierter Kork	0,040	0,049	0,0368	0,040	5/10
	(ICB) nach DIN EN 13170	0,041	0,050	0,0377	0,041	
	DIIV EIV 10170	0,042	0,052	0,0386	0,042	
1		0,043	0,053	0,0395	0,043	
İ		0,044	0,054	0,0404	0,044	
		0,045	0,055	0,0413	0,045	
		•		•	•	
		0,055	0,067	0,0504	0,055	
5.10	Holzfaserdämmstoff (WF)	0,032	0,039	0,0303	0,032	5
	nach DIN EN 13171	0,033	0,040	0,0312	0,033	
İ		0,034	0,042	0,0322	0,034	
		0,035	0,043	0,0331	0,035	i
		0,036	0,044	0,0340	0,036	
		0,037	0,045	0,0350	0,037	
		0,038	0,046	0,0359	0,038	
		0,039	0,048	. 0,0368	0,039	
		0,040	0,049	0,0378	0,040	
ļ				•	:	
		0,060	0,073	0,0565	0,060	

Es ist jeweils der für die Baukonstruktion ungünstigere Wert einzusetzen. Bezüglich der Anwendung der μ-Werte siehe DIN 4108 3.

 $[\]lambda = \lambda_{\rm D} \cdot 1,2$ (in den Zeilen 5.9 und 5.10, ist die Umrechnung der Feuchte bereits realisiert; in der Zeile 5.9 ist die Umrechnung $\lambda = \lambda_{\rm D} \cdot 1,23$ und $\lambda = \lambda_{\rm grenz} \cdot 1,1$ sowie in der Zeile 5.10 $\lambda = \lambda_{\rm D} \cdot 1,23$ und $\lambda = \lambda_{\rm grenz} \cdot 1,07$)

Der Wert $\lambda_{
m greenz}$ ist im Rahmen der technischen Spezifikationen des jeweiligen Dämmstoffs festzulegen.

DIN V 4108-4/A1:2006-06

— Vornorm —

b) Die in 4.1 angegebene Tabelle 2 wird um den Stoff "Wärmedämmputz nach DIN EN 998-1 der Kategorie T1 bzw. T2" ergänzt:

Tabelle 2 — Zeile 5 von Tabelle 1 für Wärmedämmstoffe nach harmonisierten Europäischen Normen

	-	Kategorie I	Kate	gorie II	Richtwert der
Zeile	Stoff	Bemessungswert	Grenzwert	Bemessungs- wert	Wasserdampf- Diffusionswider-
		λÞ	λ _{grenz} c	λq	standszahl ^a
5.11	Wärmedämmputz nach DIN EN 998-1 der Kategorie T1 T1 T1 T1	0,120	0,057 0,066 0,075 0,085 0,094	0,060 0,070 0,080 0,090 0,100	5/20
	T2 T2 T2	0,192	0,113 0,132 0,150	0,120 0,140 0,160	

a Es ist jeweils der für die Baukonstruktion ungünstigere Wert einzusetzen. Bezüglich der Anwendung der μ-Werte siehe DIN 4108-

2 Zu Tabelle 4:

Die Tabelle 4 "Ausgleichsfeuchtegehalte von Baustoffen" ist in Zeile 5 durch den Baustoff Kork zu ergänzen.

^{3.} Der Wert λ_{grenz} ist im Rahmen der technischen Spezifikationen des jeweiligen Dämmstoffs festzulegen.

 $[\]lambda = \lambda_{\text{grenz}} \cdot 1,05$

— Vornorm —

3 Zu Tabelle 6:

In 4.3 Tabelle 6 wird für Holzfaserplatten ein Zuschlagswert von 0,15 aufgenommen. Weiterhin ist die Bezeichnung der pflanzlichen Faserdämmstoffe neu. Holzfaserplatten nach DIN EN 622 sind zusätzlich aufgenommen worden.

Tabelle 6 — Zuschlagswerte

Zeile	Stoffe	Zuschlagswert Z
1	anorganische Stoffe in loser Schüttung	
1.1	expandiertes Gesteinsglas (z. B. Blähperlit)	0,05
1.2	sonstige anorganische Stoffe	0,05
3	pflanzliche Faserdämmstoffe	
3.1	Kokosfasern	0,10
3.2	sonstige pflanzliche Fasern	0,20
4	synthetische Faserdämmstoffe	0,20
6	Holzfaserplatten nach DIN EN 622	0,15
7	Harnstoff-Formaldehydharz (UF)-Ortschaum nach DIN 18159-2	0,10

4 Neuer Abschnitt 7

Zusätzlich aufgenommen wird ein Abschnitt zu Toren, zur Angabe der Bemessungswerte nach DIN EN 13241:

7 Bemessungswerte für Tore

Der Nennwert des Wärmedurchgangskoeffizienten $U_{\rm D}$ wird nach DIN EN 13241 ermittelt und mit dem CE-Zeichen angegeben.

Der Bemessungswert $U_{\text{D.BW}}$ des Wärmedurchgangskoeffizienten ist nach Gleichung (4) zu ermitteln:

$$U_{\mathsf{D},\mathsf{BW}} = U_{\mathsf{D}}$$

lst für den Nennwert des Wärmedurchgangskoeffizienten $U_{\rm D}$ kein Nachweis vorhanden, dürfen für den Anwendungsbereich der DIN V 4108-4 pauschal folgende Bemessungswerte $U_{\rm D,BW}$ verwendet werden:

— Vornorm —

Tabelle 15 — Bemessungswert $U_{\mathrm{D,BW}}$ in Abhängigkeit der konstruktiven Merkmale

Toraufbau ^a	Bemessungswert des Wärmedurchgangskoeffizienten $U_{ m D,BW}$ W/($ m m^2 \cdot K$)
Tore ^b mit einem Torblatt aus Metall (einschalig, ohne wärmetechnische Trennung)	6,5
Tore ^b mit einem Torblatt aus metall- oder holzbeplankten Paneelen aus Dämmstoffen ($\lambda \le 0,04$ W/(m · K) bzw. $R_D \ge 0,5$ (m ² · K)/W bei 15 mm Schichtdicke)	2,9
Tore ^b mit einem Torblatt aus Holz und Holzwerkstoffen, Dicke der Torfüllung ≥ 15 mm	4,0
Tore ^b mit einem Torblatt aus Holz und Holzwerkstoffen, Dicke der Torfüllung ≥ 25 mm	3,2
Unter Tor wird hier verstanden: Eine Einrichtung, um eine Öffnung zu schließen, die in	der Regel für die Durchfahrt von Fahrzeuge

Unter Tor wird hier verstanden: Eine Einrichtung, um eine Öffnung zu schließen, die in der Regel für die Durchfahrt von Fahrzeuger vorgesehen ist.

ANMERKUNG Die in Tabelle 15 angegebenen Werte können nicht für die Deklaration des U_D -Wertes im Rahmen des CE-Nachweises nach DIN EN 13241 verwendet werden.

5 Neuer Abschnitt 8

Zusätzlich aufgenommen wird ein Abschnitt zur Berechnung von Dämmstoffdicken bei Rohrleitungen:

8 Berechnung von Dämmstoffdicken bei Rohrleitungen

Der allgemeine Begriff für "Tor" ist in DIN EN 12433-1 definiert.

Tabelle 16 — Bestimmung von Dämmstoffdicken bei Einhaltung der Mindestanforderung der EnEV

Kupferrohr	Kupferrohre Cu nach E DIN EN 1057	JIN EN 1057		Stahlroh	ohre Fe		Mindest-			Mindestdicke der Dämmschicht in mm bezogen auf eine Wärmeleitfähigkeit von	Mindestdicke der Dämmschicht in mm ezogen auf eine Wärmeleitfähiakeit vo	thicht in mm fähiakeit von	
			nach DIN E	nach DIN EN 10255 (Mittlere Reihe)	lere Reihe)		gicke			,		,	
Nennweite	Rohr- außen-	Rohrinnen- durch-	Nennweite	Nenn- außen-	Gewinde- aröße	Rohrinnen- durch-	EnEV 0.035	Wärme- durch-					
	durch- messer	messer		durch- messer		messer	W/(m·K) (100%)	gangsko- effizient ^a	0.025	0.030	0.035	0.040	0.045
NO	mm	max.	DN	mm		max.	mm	W/(m·K)	W/(m·K)	W/(m·K)	W(m·K)	W (m·K)	W/(m·K)
8	10	8					20	0,125	10	14	20	28	38
			9	10,2	8/1	6,2	50	0,126	10	14	20	28	38
10	12	10					20	0,137	10	15	20	22	37
			8	13,5	1/4	6'8	20	0,145	10	15	20	27	36
10	15	13					20	0,154	11	15	20	27	35
			10	17,2	3/8	12,6	20	0,165	F	15	20	26	8
15	18	16				:	20	0,170	11	15	50	26	34
			15	21,3	₹/,	16,1	20	0,187	11	15	20	56	33
20°	22	19					20	0,191	+	15	50	26	33
			20	26,9	3/4	21,7	20	0,216	12	16	50	25	32
25	28	25					30	0,179	- 17	23	30	39	49
			25	33,7	1	27,3	30	0,200	18	23	30	88	48
32	35	32					08	0,205	18	53	30	38	47
			32	42,2	7/,1	36	98	0,208	21	58	36	46	22
40	42	39					68	0,198	23	30	39	09	62
			40	48,3	1,1	41,9	41,9	0,207	52	EE	42	23	99
50	54	50					50	0,201	59	39	50	63	79
			20	60,3	2	53,1	53,1	0,208	32	75	53	29	83
	64	90					09	0,201	32	45	· 09	92	94
65	92	72,1					72,1	0,201	43	99	72	16	113
			65	76,1	21/2	683	6'89	0,206	41	54	69	28	107
80	88	84,9					84,9	0,201	20	99	85	107	133
			80	6'88	3	6'08	6'08	0,206	48	E9	81	102	126
100 b	108 ^{b. c}	103 ^{b. c}					100	0,205	09	82	100	126	156
			100	114,3	4	105,3	100	0,213	09	62	100	125	154
ANMERKUNG und auf ganze	NG Wenn	ANMERKUNG Wenn Zwischenwerl und auf ganze Millimeter aufzurunden.	Wenn Zwischenwerte als Nennwerte produktionsbedingt bestehen sind die in der Tabelle 16 genannten Mindestdämmschichtdicken linear zu interpretieren limeter aufzurunden.	werte produk	ctionsbeding	bestehen si	nd die in der	Tabelle 16	genannten M	lindestdämm	schichtdicken	linear zu int	erpretieren

und auf ganze Millinteter autzurunden. ⁸ Wärmeübergangskoeffizient innen: nicht berücksichtigt; Wärmeübergangskoeffizient außen: 10 W/(m² · K). ^D Nicht in E DIN EN 1057 enthalten.

^c Errechnete Werte.