umwelt-online: Wirkung hochfrequenter Felder auf das Genom: Genotoxizität und Genregulation (5)
zurück |
Tab. 1: Übersicht über Experimente zur Genotoxizität
Abkürzungen: CA: Chromosomenaberrationen, MN: Mikrokerne, SCE: Sch westerchromatidaustausche, γ-H2AX: Doppelstrangbruchnachweis durch Irnmundfluoreszenzmarkierung von phosphoryliertem Histon H2A, 53BP1: p53 Binding Protein, EryMN: Mikrokerne in Erythrozyten
Mikrobielle Systeme
Zelltyp | Expositionseinrichtung | Signalformen | Dosimetrie | Test | Ergebnis | Referenz | Jahr |
Salmonella | TEM-Zelle | 835 MHz CDMA | 4 VV/kg; 48 h | Ames | negativ | Chang et al. | 2005 |
Salmonella | TEM-Zelle | 835 MHz CDMA | 4 W/kg; 48 h | Ames | negativ | Chang et al. | 2005 |
E. coli | TEM-Zelle | 835 MHz CDMA | 4 W/kg; 48 h | Reversionen | negativ | Chang et al. | 2005 |
Plasmid | TEM-Zelle | 835 MHz CDMA | 4 W/kg; 48 h | Strangbrüche | negativ | Chang et al. | 2005 |
S. cerevisiae | 2 kleine Absorberkammern | 900 MHz GSM | 0,13 und 1,3 W/kg | Mutationen, Rekombinationen | negativ | Gos et al. | 2000 |
Humanzellen in vitro
Zelltyp | Expositionseinrichtung | Signalformen | Dosimetrie | Test | Ergebnis | Referenz | Jahr |
stimulierte Lymphozyten | Parallelplattenresonator | 830 MHz CW | 1,6 - 8,8 W/kg; 72 h | Aneuploidie (Chromosom 17) | positiv | Mashevich et al. | 2003 |
Glioblastomzellen, Lungenfibroblasten | Absorberkammer mit Hornantenne | 2,1425 GHz CW und W-CDMA | 0,08 - 0,8 W/kg; 2 und 24 h | alk. Comet | negativ | Sakuma et al. | 2006 |
HL-60 (transf. Lymphozyten) | Wellenleiter mit stehenden Wellen | 1.800 MHz CW, GSM basic, GSM talk | 0,2 - 3 W/kg; bis 72 h | alk. Comet, MN | positiv, aber unplausible Dosisabhängigkeit | European Union 2004a REFLEX Participant 2 (Tauber, Berlin) | 2004 |
Lymphozyten | Absorberkammer, mit Rechteckhornantenne | 2,45 GHz gepulst mit PRF 10 kHz; 8,2 GHz | 2,13 W/kg 2 h;
20,71 W/kg 2 h | MN, CA | negativ, sowohl in unstimulierten als auch stimulierten Lymphozyten | Vijayalaxmi | 2006 |
Molt-4-Zellen | radiale Wellenleitung | 847,7 MHz CDMA 835,6 MHz FDMA 813,6 MHz iDEN 836,6 MHz TDMA | 3,2 W/kg 3,2 W/kg 2,4 W/kg+24 mW/kg 2,6 W/kg+26 mW/kg je nach Standard 2, 3, 21 h | alk. Comet | negativ | Hook et al. | 2004b |
Fibroblasten | Wellenleiter mit stehenden Wellen | 1.800 MHz CW, GSM basic, GSM talk | 1,2 und 2 W/kg; 4 / 6 / 24 h, 5 min an, 10 min aus | alk. und neutraler Comet | positiv | European Union 2004a REFLEX Participant 3 (Rüdiger, Wien) | 2005 |
Fibroblasten | Wellenleiter mit stehenden Wellen | 1.800 MHz CW, GSM basic, GSM talk | 1,2 und 2 W/kg; 4 / 6 / 24 h, 5 min an, 10 min aus | MN, CA | positiv | Diem et al. | 2005 |
Lymphozyten | Wellenleiter mit stehenden Wellen | 1,8 GHz | 3 W/kg; 2 h | alk. Comet | uneinheitlich | Baohong et al. | 2005 |
Lymphozyten | GSM900 Test-Handy mit TEM-Zelle | 915 MHz GSM basic | 37 mW/kg; 2 h | γ-H2AX, 53BP1 | negativ | Belyaev at al. | 2005 |
Lymphozyten | TEM-Zelle mit Mobiltelefon | 905 und 915 MHz GSM basic | 37 mW/kg; 1 Stunde | γ-H2AX, 53BP1 | negativ | Markova et al. | 2005 |
Lymphozyten | abgeschlossener Wellenleiter im Wasserbad | 900 MHz GSM Signal | 0,3 und 1 W/kg; 2 h | alk. Comet | negativ | Zeni et al. | 2005 |
Lymphozyten | abgeschlossener Wellenleiter im Wasserbad | 900 MHz GSM Signal | 0,3 und 1 W/kg; 2 h | CA, SCE | negativ | Zeni et al. | 2005 |
Lymphozyten | Wirepatch-Zelle | 900 MHz 1:8 Pulsung | 0, 1, 5 und 10 W/kg peak (!) | MN | negativ | Scarfi et al. | 2006 |
Lymphozyten | Wellenleiter mit stehenden Wellen | 935 MHz GSM basic | 1 und 2 W/kg; 24 h | alk. Comet, CA, SCE, MN | negativ | Stronati et al. | 2006 |
Lymphozyten | unklar | 1.800 MHz, CW | 0, 5, 10, 20 mW/cm2; 1, 2 und 3 h | MN | positiv, aber sehr große Variabilität zwischen verschiedenen Spendern | Zotti-Martelli et al. | 2005 |
Fibroblasten | Wellenleiter mit stehenden Wellen | 1.800 MHz CW und GSM basic | 2 W/kg; 1 bis 24 h, 5 min an, 10 min aus | MN, alk. Comet | negativ | Speit et al. | 2006 |
Nagerzellen in vitro
Zelltyp | Expositionseinrichtung | Signalformen | Dosimetrie | Test | Ergebnis | Referenz | Jahr |
Maus m5S | Wellenreiter-Resonator | 2,45 GHz CW und PM 1/9 + 1/18 | 5 - 100 W/kg CW und 50 - 100 W/kg PM; 2 h | CA | negativ | Komatsubara et al. | 2005 |
R1-Stammzellen (Ratte) | Wellenleiter mit stehenden Wellen | 1,71 GHz, GSM 217 und talk | 0,4 W/kg talk, 0,11 W/kg DTX, 1,5 - 2 W/kg GSM 217 | alk. Comet | negativ | Czyz et al. Nikolova et al. | 2004 2005 |
R1-Stammzellen (Ratte) | Wellenleiter mit stehenden Wellen | 1,71 GHz, GSM 217 und talk | 0,4 W/kg talk, 0,11 W/kg DTX, 1,5 - 2 W/kg GSM 217 | CA, SCE | negativ | Czyz et al. Nikolova et al. | 2004 2005 |
R1-Stammzellen (Ratte) | Wellenleiter mit stehenden Wellen | 1,71 GHz, GSM 217 und talk | 0,4 W/kg talk, 0,11 W/kg DTX, 1,5 - 2 W/kg GSM 217 | neutr. Comet | positiv, aber unplausibel, da alk. Comet negativ | Czyz et al. Nikolova et al. | 2004 2005 |
C3H10T1/2 (Maus) | radiale Wellenleitung | 2.450 MHz CW | 1,9 W/kg; 2h | alkalilabile DNA-Schäden, DNA-Protein-Vernetzungen | negativ | Lagroye et al. | 2004b |
Ratten Granulosa | Wellenleiter mit stehenden Wellen | 1.800 MHz CW, GSM basic, GSM talk | 1,2 und 2 W/kg; 4 / 6 / 24 h, 5 min an, 10 min aus | alk. und neutraler Comet | positiv | Diem et al. | 2005 |
V79 chines. Hamsterzellen | Wellenleiter mit stehenden Wellen | 1.800 MHz CW und GSM basic | 2 W/kg; 1 bis 24 h, 5 min an, 10 min aus | MN, alk. Comet | negativ | Speit et al. | 2006 |
Hamster-Lungenfibroblasten | 1.800 MHz | 3,0 W/kg; 1 oder 24 h, 5 min an, 10 min aus | γ-H2AX | positiv, aber nur bei 24 h, schwach signifikant | Zhang DY | 2006 |
In-vivo-Experimente (Nagetiere)
Zelltyp | Expositionseinrichtung | Signalformen | Dosimetrie | Test | Ergebnis | Referenz | Jahr |
Rattenhirn | Zylinder-Wellenleiter | 2.450 MHz gepulst: 2 µs Puls, Pulsperiode 2 ms | 1,2 W/kg; 2 b | alk. Comet | negativ | Lagroye et al. | 2004a |
Mäuse | Hornartige Expokammer | 2,45 GHz CW | Ganzkörper-SAR 4,3 W/kg, 1,4 W/kg oder 0,71 W/kg; 16 h per Tag, 15 Tage, 20 s an, 40 s aus/ 10 s an,50 s aus | lacZ-Mutationen | negativ | Ono et al. | 2004 |
Lymphoz., Erythroz., Keratinoz. (Maus) | radialer Wellenleitungsresonator, Mäuse fixiert | 902 und 1.747 MHz GSM basic, DTX, handover, power control | Ganzkörper-Peak SAR 0 - 33,2 W/kg (1 Woche), 0 - 24,9 W/kg (6 Wochen) 2 h pro Tag, 5 Tage pro Woche 1 bzw. 6 Wochen | MN | negativ | Görlitz et al. | 2005 |
männliche Keimzellen (Mäuse) | TE10 Wellenleiter mit durchlaufender Welle | 900 MHz CW | 90 mW/kg; 12 h pro Tag, 7 Tage | DNA-Strangbrüche mit Gelelektrophorese/ | negativ | Aitken et al. | 2005 |
Genveränderungen mit quantitativer PCR | positiv | ||||||
Ratten-Erythrozyten | Fernfeldexposition 1,4 m | 2,45 GHz CW | 1,25 W/kg; 2 h pro Tag, 7 Tage pro Woche | MN | uneinheitlich | Trosic et al. | 2004 |
Ratten-Knochenmark | Fernfeldexposition 1,4 m | 2,45 GHz CW | 1,25 W/kg; 2 h pro Tag, 7 Tage pro Woche | MN | positiv, aber nur transient | Trosic et al. | 2006 |
Hirn-, Thymus- und Milzzellen der Ratte | GSM900 Test-Handy mit TEM-Zelle | 915 MHz GSM basic | 0,4 mW/g; 2 h | Strangbrüche durch Gelelektrophorese | negativ | Belyaev et al. | 2006 |
Ratte: Hirn, Leber, Blut | radiale Wellenleitung mit Absorberabschluss, Tiere ohne Restrainer | 900 MHz GSM basic | Ganzkörper-SAR 0,3 und 0,9 W/kg; 2 h pro Tag, 5 Tage pro Woche, 2 Jahre | alk. Comet, EryMN | negativ | Verschaeve et al. | 2006 |
Rattenhirn | Absorberkammer | 2,45 GHz, 16,5 GHz | 1,0 und 2,01 W/kg; 2 h pro Tag, 35 Tage außer Wochenende | alk. Comet | positiv | Paulraj et al. | 2006 |
Kombinationsexperimente
Zelltyp | Expositionseinrichtung | Signalformen | Dosimetrie | Test | Ergebnis | Referenz | Jahr |
Salmonella | TEM-Zelle | 835 MHz CDMA | 4 W/kg; 48 h | Ames | negativ, keine Comutagenität | Chang et al. | 2005 |
Kombination mit verschiedenen Mutagenen: 4NQO (4-Nitrochinolin-loxid), Natriumazid, Cumenhydroperoxid, 9-Aminoacridin | |||||||
Human-Lymphozyten | Wellenleiter mit stehenden Wellen | 1,8 GHz | 3 W/kg; 2 h | alk. Comet | uneinheitlich | Baohong et al. | 2005 |
Kombination mit BLM, MMC, MMS, 4NQO | |||||||
Human-Lymphozyten | Wellenleiter mit stehenden Wellen | 935 MHz GSM basic | 1 und 2 W/kg; 24 h | alk. Comet, CA, SCE, MN | negativ, keine Comutagenität | Stronati et al. | 2006 |
Kombination mit 1 Gy Röntgenstrahlen | |||||||
Ratte: Hirn, Leber, Blut | radiale Wellenleitung mit Absorberabschluss, Tiere ohne Restrainer | 900 MHz GSM basic | Ganzkörper-SAR 0,3 und 0,9 W/kg; 2 h pro Tag, 5 Tage pro Woche, 2 Jahre | alk. Comet, EryMN | negativ, keine Comutagenität | Verschaeve et
al. | 2006 |
Kombination mit MX (3-Chlor-4-dichlormethyl-5-hydroxy-2(5H)-Furanon) im Trinkwasser |
Abkürzungsverzeichnis:
53BP1 | p53-binding protein |
BLM | Bleomycin |
BMP | Bone Morphogenetic Protein |
BrdU | Bromdesoxyuridin |
CA | Chromosomenaberration |
CW | Continuous Waves |
CDMA | Code Division Multiple Access |
DNA, cDNA | Desoxyribonucleinsäure (Desoxiribonucleic Acid) |
DSB | DNA-Doppelstrangbrüche (Double Strand Breaks) |
ES | embryonale Stammzellen |
FACS | Fluorescence activated cell sorting |
FDMA | Frequency Division Multiple Access |
GSM | Global System for Mobile Communications |
GSM-DTX | GSM-Discontimious Transmission |
HF | Hochfrequenz |
HPRT | Hypoxanthin-Phosphoribosyl-Transferase |
hsp | "Heat Shock"-Proteine |
iDEN | Integrated Digital Enhanced Network |
IPSC-Guidelines | Institute for the Protection and Security of the Citizen-Guidelines |
MMC | Mitomycin C |
MMS | Methylmethansulfonat |
MN | Mikronuclei |
MAP | Mitogen activated protein |
PCE | polychromatische Erythrozyten |
PCR | Polymerase Ketten Reaktionen |
RNA, mRNA | Ribonucleic Acid |
ROS | Reactive Oxygen Species |
RT-PCR | Reverse Transkription-Polymerase Ketten-Reaktion |
SAGE | Serial Analysis of Gene Expression |
SAR | spezifische Absorptionsrate |
SCE | Sister Chromatid Exchange |
SSB | Single Strand Break |
SSL | Single Strand Lesions |
T | Thymidin |
TDMA | Time Division Multiple Access |
TE | transversalelektrisch |
TEM | transversalelektromagnetisch |
TM | transversalmagnetisch |
TUNEL | Terminale Desoxyribosyl-Transferase mediated dUTP Nick End Labeling |
UMTS | Universal Mobile Telecommunications System |
8 Literaturverzeichnis
Aaron CS, Bolesfoldi G, Glatt HR, Moore M, Nishi Y, Stankoski L, Theiss J, Thompson E (1994): Mammalian cell gene mutation assays working group report. Mutat Res 31, 235-239.
Aitken RJ, Bennets LE, Sawyer D, Wiklendt AM, King BV (2005): Impact of radio frequency electromagnetic radiation on DNA integrity in the male germline. Int J Androl 28, 171 - 179.
Albertini RJ, Anderson D, Douglas GR, Hagmar L, Hemminki K, Merlo F, Natarajan AT, Norppa H, Shuker DE, Tice R, Waters MD, Aitio A (2000): IPCS guidelines for the monitoring of genotoxic effects of carcinogens in humans. International Programme on Chemical Safety. Mutat Res 463, 111 - 172.
Auvinen M. Paasinen A, Andersson LC, Holtta E (1992): Ornithine decarboxylase activity is critical for cell transformation. Nature 360, 355 - 358.
Baohong W, Jiliang H, Lifen J, Deqiang L, Wei Z, Jianlin L, Hongping D (2005): Studying the synergistic damage effects induced by 1.8 GHz radiofrequency field radiation (RFR) with four chemical rnutagens an human lymphocyte DNA using comet assay in vitro. Mutat Res 578, 149 - 157.
Belyaev IY, Hillert L, Protopopova M, Tamm C, Malmgren LO, Persson BR, Selivanova G, Harms-Ringdahl M (2005): 915 MHz microwaves and 50 Hz magnetic field affect chromatin conformation and 53BP1 foci in human lymphocytes from hypersensitive and healthy persons. Bioelectromagnetics 26, 173 - 184.
Belyaev IY, Koch CB, Terenius 0, Roxström-Lindquist K, Malmgren LOG, Sommer WH, Salford LG, Persson BR (2006): Exposure of rat hrain to 915 MHz GSM microwaves induces changes in gene expression but not double stranded DNA breaks or effects an chromation conformation. Biuelectromagnetics 27, 295 - 306.
Capri M, Scarcella E, Bianchi E, Fumelli C, Mesirca P, Agostini C, Remondini D, Schuderer J, Kuster N, Franceschi C, Bersani F (2004a): 1.800 MHz radiofrequency (mobile phones, different Global System for Mobile communication modulations) does not affect apoptosis and heat shock protein 70 level in peripheral blood mononuclear cells from young and old donors. Int J Radiat Biol 80, 389 - 397.
Capri M, Scarcella E, Fumelli C, Bianchi E, Salvioli S, Mesirca P, Agostini C, Antolini A, Schiavoni A, Castellani G, Bersani F, Franceschi C (2004b): In vitro exposure of human lymphocytes to 900 MHz CW and GSM modulated radiofrequency: studies of proliferation, apoptosis and mitochondrial membrane potential. Radiat Res 162, 211 - 218.
Capri M, Salvioli S, Altilia S, Sevini F, Remondini D, Mesirca P, Bersani F, Monti D, Franceschi C (2006): Agedependent effects of in vitro radiofrequency exposure (mobile phone) an CD95+ T helper human lymphocytes. Ann NY Acad Sci 1067, 493 - 499.
Chang S-K, Choi J-S, Gil H-W, Yang J-O, Lee E-Y, Jeon Y-S, Lee Z-W, Lee Z-W, Lee M, Hong M-Y, Ho Son T, Hong S-Y (2005): Genotoxicity evaluation of electromagnetic fields generated by 835-MHz mobile phone frequency band. Europ J Cancer Prev 14, 175 - 179.
Cotgreave IA (2005): Biological stress responses to radio frequency electromagnetic radiation: are mobile phones really o (heat) shocking? Arch Blochern Biophys 435, 227 - 240.
Czyz j, Guan K, Zeng Q, Nikolova T, Meister A, Schönborn F, Schuderer J, Kuster N, Wobus AM (2004): High frequency electromagnetic fields affect gene expression levels in tumor suppressor p53-deficient embryonic stern cells. Bioelectromagnetics 25, 296 - 307.
Daniells C, Duce I, Thomas D, Sewell P, Tattersall J, de Pomerei D (1998): Transgenic nematodes as biomonitors of microwave induced stress. Mutat Res 399, 55 - 64.
Dasenbrock C (2005): Animal carcinogenicity studies on radiofrequency fields related to mobile phones and base stations. Toxicol Appl Pharmacol 207 (2 Suppl), 342 - 346.
Dawe AS, Smith B, Thomas DWP, Greedy S, Vasic N, Gregory A, Loader B, de Pomerai DI (2006): A small temperature rise may contribute towards the apparent induction by microwaves of heatshock gelle expression in the nematode Caenorhabditis elegans. Bioelectromagnetics 27, 88 - 97.
de Pomerai D, Daniells C, David H, Allan J, Duce I, Mutwakil M, Thomas D, Sewell P, Tattersall J, Jones D, Candido P (2000): Nonthermal heatshock response to microwaves. Nature 405, 417 - 418.
de Pomerai DI, Smith B, Dawe A, North K, Smith T, Archer DB, Duce IR, Jones D, Candido EPM (2003): Microwave radiation can alter protein conformation without bulk heating. FEBS Lett 543, 93 - 97.
Diem E, Jahn 0, Rüdiger HW (2005): Nonthermal DNA breakage by mobile phone radiation in human fibroblasts and transformed GFSH-R17 (rat granulosa) cells in vitro. Mutation Res 583, 178 - 183.
European Union (2004a): Risk Evaluation of Potential Environmental Hazards From Low Frequency Electromagnetic Field Exposure (REFLEX). 5"' Framework: Quality of Life and Management of Living Resources.
European Union (2004b): Invivo and invitro replication studies related to mobile telephones and base stations (PERFORM B). Framework: Quality of Life and Management of Living Resources.
Finnie JW (2005): Expression of the immediate early gene, cfos, in mouse brain after acute global system for mobile communication microwave exposure. Pathology 37, 231 - 233.
Görlitz BD, Müller M, Ebert S, Hecker H, Kuster N, Dasenbrock C (2005): Effects of 1-week and 6-week exposure to GSM/DCS radiofrequency radiation on micronucleus formation in B6C3F1 mice. Radiat Res. 164, 431 - 439.
Gos P, Eicher B, Kohli J, Jeyer WD (2000): No mutagenic or recombinogenic effects of mobile phone fields at 900 MHz detected in the yeast Saccharomyces cerevesiae. Bioelectromagnetics 21, 515 - 523.
Heikkinen P, Kosma VM, Alhonen L, Huuskonen H, Komulainen H, Kumlin T, Laitinen JT, Lang S, Puranen L, Juutilainen J (2003): Effects of mobile phone radiation on UV-induced skin tumourigenesis in ornithine decarboxylase transgenic and nontransgenic mice. Int Radiat Biol 79, 221 - 233.
Heynick LN, Johnston SA, Mason PA (2003): Radio frequency electromagnetic fields: cancer, mutagenesis, and genotoxicity. Bioelectromagnetics Suppl 6, 74 - 100.
Hook GJ, Spitz DR, Sim JE, Higashikubo R, Baty JD, Moros EG, Roti Roti JL (2004a): Evaluation of parameters of oxidative stress after in vitro exposure to FMCW- and CDMA-modulated radiofrequency radiation fields. Rad Res 162, 497 - 504.
Hook GJ, Zhang P, Lagroye I, Li L, Higashikubo R, Moros EG, Straube WL, Pickard WF, Baty JD, Roti Roti JL (2004b): Measurement of DNA damage and apoptosis in Molt-4 cells after in vitro exposure to radiofrequency radiation. Rad Res 161, 193 - 200.
Huang T-Q, Lee J-S, Kirn T-H, Pack J-K, Jang J-J, Seo J-S (2005): Effect of radiofrequency radiation exposure an mouse skin tumorigenesis initiated by 7,12-dimethylbenz[u]anthracene. Int J Radiat Biol 81, 861 - 867.
Komatsuhara Y, Hirose H, Sakurai T, Koyama S, Suzuki Y, Taki M, Miyakoshi J (2005): Effect of highfrequency electromagnetic fields with wide range of SARs on chromosomal aberations in murine m5S cells. Mutat Res 587, 114 - 119.
Lagroye I, Ananae R, Wettring BA, Moros EG, Straube WL, Laregina M, Niehoff M, Pickard WF, Baty J, Roti Roti JL (2004a): Measurement of DNA damage after acute exposure to pulsedwave 2450 MHz microwaves in rat brain cells by two alkaline comet assay methods. Int J Radiat Biol 80, 11 - 20.
Lagroye I, Hook GJ, Wettring BA, Baty JD, Moros EG, Straube WL, Roti Roti JL (2004b): Measurement of alkalilabile DNA damage and protein-DNA crosslinks after 2450 MHz microwave and low dose gamma irradiation in vitro. Rad Res 161, 201 - 214.
Lai H, Singh NP (1995): Acute lowintensity microwave exposure increases DNA singlestrand breaks in rat brain cells. Bioelectromagnetics 16, 207 - 210.
Lai H, Singh NP (1996): Single- and doublestrand DNA breaks in rat brain cells after acute exposure to radiofrequency electromagnetic radiation. Int J Radiat Biol 69, 513 - 521.
Lai H, Singh NP (1997): Melatonin and a spintrap compound block radiofrequency electromagnetic radiationinduced DNA strand breaks in rat brain cells. Bioelectromagnetics. 18, 446 - 454.
Lantow M, Schuderer J, Hartwig C, Simko M (2006): Free radical release and hsp70 expression in two human immunerelevant cell lines after exposure to 1800 MHz radiofrequency radiation. Radiat Res. 165, 88 - 94.
La Regina M, Moros EG, Pickard WF, Straube WL, Baty J, 1Roti Roti JL (2003): The effect of chronic exposure to 835.62 MHz FDMA or 847.74 MHz CDMA radiofrequency radiation on the incidence of spontaneous tumors in rats. Rad Res 160, 143 - 151.
Lee E, Oh E, Lee J, Sul D, Lee J (2004): Use of the tail moment of the lymphocytes to evaluate DNA damage in human biomonitoring studies. Toxicol Sci. 81, 121 - 132.
Lee S, Johnson D, Dunbar K, Dong H, Ge X, Kim YC, Wing C, Jayathilaka N, Emmanuel N, Zhou CQ, Gerber HL, Tseng CC, Wang SM (2005a): 2.45 GHz radiofrequency fields alter gene expression in cultured human cells. FEBS Lett 579, 4829 - 4836.
Lee J-S, Huang T-Q, Lee J-J, Pack J-K, Jang J-J, Seo J-S (2005b): Subchronic exposure of hsp70.1-deficient mice to radiofrequency radiation. Int J Radiat Biel 81, 781 - 792.
Lee J-S, Huang T-Q, Kim T-H, Kim JY, Kim HJ, Pack J-K, Seo J-S (2006): Radiofrequency radiation does not induce stress response in human T-lymphocytes and rat primary astrocytes. Bioelectromagnetics 27, 578 - 588.
Leszczynski D, Joenväärä S, Reivinen R, Kuokka R (2002): Nonthermal activation of hsp27/p38MAPK stress pathway by mobile phone radiation in human endothelial cells: Molecular mechanism for cancer- and bloodbrain barrierrelated effects. Differentiation 70, 120 - 129.
Leszczynski D, Nylund R, Joenväärä S, Reivinen J (2004): Applicability of discovery scienceapproach to determine b iological effects of mobile phone radiation. Proteomics 4, 426 - 431.
Lorge E, Thybaud V, Aardema MJ, Oliver J, Wakata A, Lorenzon G, Marzin D (2006): SFTG international collaborative study an in vitro micronucleus test I. General conditions and overall conclusions of the study. Mutat Res 607, 13 - 36.
Maes A, Collier M, Slaets D, Verschaeve L (1996): 954 MHz microwaves enhance the mutagenic properties of mitomycin C. Environ Mol Mutagen 28, 26 - 30.
Maes A, Collier M, Van Gorp U, Vandoninck S, Verschaeve L (1997): Cytogenetic effects of 935.2-MHz (GSM) microwaves alone and in combination with mitomycin C. Mutat Res 393, 151 - 156.
Maes A, Collier M, Verschaeve L (2000): Cytogenetic investigations on microwaves emitted by a 455.7 MHz car phone. Folia Biol (Praha) 46,175 - 180.
Maes A, Collier M, Verschaeve L (2001): Cytogenetic effects of 900 MHz (GSM) microwaves on human lymphocytes. Bioelectromagnetics 22, 91 - 96.
Markova E, Hillert L, Malmgren L, Persson BR, Belyaev IY (2005): Microwaves from GSM mobile telephones affect 53BP1 and gamma-H2AX foci in human lymphocytes from hypersensitive and healthy persons. Environ Health Perspect 113, 1172 - 1177.
Mashevich M, Folkman D, Kesar A, Barbul A, Korenstein R, Jerby E, Avivi L (2003): Exposure of human peripheral blood lymphocytes to electromagnetic fields associated with cellular phones leads to chromosomal instability. Bioelectromagnetics 24, 82 - 90.
Meltz ML (2003): Radiofrequency exposure and mammalian cell toxicity, genotoxicity, and transformation. Bioelectromagnetics 24, Suppl 6, 196 - 213.
Miyakoshi J, Takemasa K, Takashima Y, Ding GR, Hirose 1f, Koyama S (2005): Effects of exposure to a 1950 MHz radio frequency field on expression of Hsp70 and Hsp27 in human glioma cells. Bioelectromagnetics 26, 251 - 257.
Mortelmans K, Zeiger E (2000): The Ames Salmonella/microsonre mutagenicity test. Mutat Res 455, 29 - 60.
Moulder JE, Foster KR, Erdreich LS, McNamee JP (2005): Mobile phones, mobile phone base stations and cancer: a review. Int Radiat Biol. 81, 189 - 203.
Müller W-U, Streffer C (1994): Micronucleus assays. In: Ohe G (Hrsgb.) Advances in mutagenesis research, Vol 5, Springer Verlag, Berlin, 1 - 134.
Müller W-U, Ciborovius J, Bauch T, Johannes C, Schunck C, Mallek U, Bäcker W, Obe G, Streffer C (2004): Analysis of the action of the restriction endonuclease Alul using three different comet assay protocols. Strahlenther Onkol. 180, 655 - 664.
Natarajan M, Vijayalaxmi, Szilagyi M, Roldan FN, Meltz ML (2002): NF-KB DNA-Binding Activity after high peak power pulsed microwave (8.2 GHz) exposure of normal human monocytes. Bioelectromagnetics 23, 271 - 277.
Nikoloski N, Fröhlich J, Samaras T, Schuderer J, Kuster N (2005): Reevaluation and improved design of the TEM cell in vitro exposure unit for replic:ation studies. Bioelectromagnetics 26, 215 - 224.
Nikolova T, Czyz J, Relletschek A, Blyszczuk P, Fuchs J, Jovtchev G, Schuderer J, Kuster N, Wobus AM (2005): Electromagnetic fields affect transcript levels of apoptosisrelated genes in embryonic Stern cellderived neural progenitor cells. FASEB J 19, 1686 - 1688.
Nylund R, Leszczynski D (2004): Proteomics analysis of human endothelial cell line EA.hy926 after exposure to GSM 900 radiation. Proteomics 4, 1359 - 1365.
Nylund R, Leszczynski D (2006): Mobile phone radiation causes changes in gene and protein expression in human endothelial cell lines and the response seems to be genome- and proteomedependent. Proteomics 6, 4769 - 4780.
Olive PL, Banath JP, Durand RE (1990): Heterogeneity in radiationinduced DNA damage and repair in tumor and normal cells measured using the "comet" assay. Rad Res 122, 86 - 94.
Ono T, Saito Y, Komura J, Ikehata H, Tarusavva Y, Nojima T, Goukon K, Ohba Y, Wang J, Fujiwara 0, Sato R (2004): Absence of mutagenic effects of 2.45 GHz radiofrequency exposure in spieen, liver, brain, and testis of lacZ-transgenic mouse exposed in utero. Tohoku J Exp Med. 202, 93 - 103.
Paulraj R, Behari J (2006): Single strand DNA breaks in rat brain cells exposed to microwave radiation.
Mutat Res 11, 596, 76 - 80.
Penafiel LM, Litovitz T, Krause D, Desta A, Mullins JM (1997): Role of modulation on the effect of microwaves an ornithine decarboxylase activity in L929 cells.
Bioelectromagnetics 18, 132 - 141.
Pyrpasopoulou A, Kotoula V, Cheva A, Hytiroglou P, Nikolakaki E, Magras IN, Xenos TD, Tsiboukis TD, Karkavelas G (2004): Bone morphogenetic protein expression in newborn rat kidneys after prenatal exposure to radiofrequency radiation.
Bioelectromagnetics. 25, 216 - 227.
Qutob SS, Chauhan V, Bellier PV, Yauk CL, Douglas GR, Berndt L, Williams A, Gajda GB, Lemay E, Thansndote A, McNamee JP (2006): Microarray gene expression profiling of a human glioblastoma cell line exposed in vitro to a 1.9 GHz pulsemodulated radiofrequency field. Rad Res 165, 636 - 644.
Remondini D, Nylund R, Reivinen J, Poulletier de Cannes F, Veyret B, Lagroye 1, Haro E, Trillo MA, Capri M, Franceschi C, Schlatterer K, Gminski R, Fitzner R. Tauber R, Schuderer J, Kuster N, Leszczynski D, Bersani F, Maercker C (2006): Gene expression changes in human cells alter exposure to mobile phone microwaves. Proteomics 6, 4745 - 4754.
Repacholi MH, Basten A, Gebski V, Noonan D, Finnie J, Harris AW (1997): Lymphomas in Ep-Pim1 transgenic mice exposed to pulsed 900 MHz electromagnetic fields. Radiat Res 147, 631 - 640
Rothkamm K, Loebrich M (2003): Evidence for a lack of DNA doublestrand break repair in human cells exposed to very low xray Boses. Proc Natl Acad Sci USA 100, 5057 - 5062.
Sakuma N, Komatsubara Y, Takeda H, Hirose H, Sekijima M, Nojima T, Miyakoshi J (2006): DNA strand breaks are not induced in human cells exposed to 2.1425 GHz band CW and W-CDMA modulated radiofrequency fields allocated to mobile radio base stations. Bioelectromagnetics 27, 51 - 57.
Scarfi MR, Fresegna AM, Villani P, Pinto R, Marino C, Sarti M, Altavista P, Sannino A, Lovisolo GA (2006): Exposure to radiofrequency radiation (900 MHz, GSM Signal) does not affect micronucleus frequency and cell proliferation in human peripheral blood lymphocytes: an interlaboratory study. Rad Res 165, 655 - 635.
Schönborn F, Pokovic K, Wobus AM, Kuster N (2000): Design, optimization, realization, and analysis of an in vitro system for the exposure of embryonic stem cells at 1.71 GHz. Bioelectromagnetics. 21, 372 - 384.
Schuderer J, Spät D, Samaras T, Oesch VV, Kuster N (2004a): in Vitro Exposure Systems for RF Exposures at 900 MHz. IEEE Transactions an Microwave Theory and Techniques 52, 2067 - 2075.
Schuderer J, Samaras T, Oesch W, Spät D, Kuster N (20046): High peak SAR exposure unit with tight exposure and environmental control for in vitro experiments at 1800 MHz. IEEE Transactions on Microwave Theory and Techniques 52, 2057 - 2066.
Shallom JM, Di Carlo AL, Ko D, Penafiel LM, Nakai A, Litovitz TA (2002): Microwave exposure induces Hsp70 and confers protection against hypoxia in chick embryos. J Cell Biochem 86, 490 - 496.
Simko M, Hartwig C, Lantow M, Lupke M, Mattsson MO, Rahman Q, Rollwitz J (2006): Hsp70 expression and free radical release after exposure to nonthermal radiofrequency electromagnetic fields and ultrafine particles in human Mono Mac6 cells. Toxicol Lett 161,73-82.
Sommer AM, Streckort J, Bitz AK, Hansen VW, Lorchl A (2004): No effects of GSM-modulated 900 MHz electromagnetic fields on survival rate and spontaneous development of lymphoma in female AKR/J rinne. BMC Cancer 4, 77 (doi: 10.1186/1471-2407-4-77).
Speit G, Schütz P, Hoffmann H (2007): Genotoxic effects of radiofrequency electromagnetic field exposure (RF-EMF) in cultured mammalian cells are not independently reproducible. Mutat Res 626, 42 - 47.
Strahlenschutzkommission (2001): Grenzwerte und Vorsorgemaßnahmen zum Schutz der Bevölkerung vor elektromagnetischen Feldern, Empfehlung der Strahlenschutzkommission mit wissenschaftlicher Begründung. Berichte der SSK, Heft 29, Urban & Fischer, München, Jena.
Stronati L Tosta A, Moquet J, Edwards A, Cordelli E, Villani P, Marino C, Fresegna AM, Appolloni M, Lloyd D (2006): 935 MHz cellular phone radiation. An in vitro study of genotoxicity in human lymphocytes. Int J Radiat Biol 82, 339 - 346.
Takashima Y, Hirose H, Koyama S, Suzuki Y, Taki M, Miyakoshi J (2006): Effects of continuous and intermittent exposure to RF fields with a wide range of SARs an cell growth, survival, and cell cycle distribution. Bioolectromagnetics 27, 392 - 400.
Thorlin T, Rouquette J-M, Hamnerius Y, Hansson E, Person M, Björklund U, Rosengren L, Rönnbäck L, Persson M (2006): Exposure of cultured astroglial and microglial brain cells to 900 MHz microwave radiation. Rad Res 166, 409 - 421.
Tian F. Nakahara T, Wake K, Taki M, Miyakoshi J (2002): Exposure to 2.45 GHz electromagnetic fields induces hsp70 at a high SAR of more than 20 W/kg but not at 5W/kg in human glioma MO54 cells. lnt J Radiat Biol 78, 433 - 440.
Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kohayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000): Single cell gol/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mntagen 35, 206 - 221.
Trosic I, Busljeta I Modlic B (2004): Investigation of the genotoxic effect of microwave irradiation in rat bone marrow cells: in vivo exposure. Mutagenesis 19, 361 - 364.
Trosic I, Busljeta I. (2006): Erythropoietic dynamic equilibrium in rats maintained after microwave irradiation. Exp Toxicol Pathol 57, 247 - 251.
Utteridge TD, Gebski V, Finnie JW, Vernon-Roberts B, Kuchel TR (2002): Longterm exposure of E-mu-Piml transgenic mice to 898.4 MHz microwaves does not increase lymphoma incidence. Radiat Res 158, 357 - 364.
Verschaeve L (2005): Genetic effects of radiofrequency radiation (RFR). Toxicol Appl Pharmacol 207 (2 Supp1), 336 - 341.
Verschaeve L, Heikkinen P, Verheyen G, Van Gorp U, Bonnen F, Valider Plaetse F, Maes A, Kuumlin T, Maki-Paakkanen J, Puranen L, Juutilainen J (2006): Investigation of cogenotoxic effects of radiofrequency electromagnetic fields in vivo. Radiat Res 165, 598 - 607.
Vijayalaxmi, Sasser LB, Morris JE, Wilson BW, Anderson LE (2003): Genotoxic potential of 1.6 GHz wireless communication signal: in vivo twoyear bioassay. Rad Res 159, 558 - 564.
Vijayalaxmi, Obe G (2004): Controversial cytogenetic observations in mammalian somatic cells exposed to radiofrequency radiation. Radiat Res 162, 481 - 496.
Vijayalaxmi (2006): Cytogenetic studies in human blood lymphocytes exposed in vitro to 2.45 GHz or 8.2 GHz radiofrequency radiation. Rad Res 166, 532 - 538.
Vijayalaxmi, McNamee JP, Scarfi MR (2006): Letter to the editor: Comments an DNA strand Breaks by Diem et al. and Ivancsits et al. Mutation Res 603, 104 - 106.
Whitehead TD, Brownstein BH, Parry JJ, Thompson D, Cha BA, Moros EG, Rogers BE, Roti Roti JL (2005): Expression of the protooncogene Fos after exposure to radiofrequency radiation relevant to wireless communications. Rad Res 164, 420 - 430.
Whitehead TD, Moros EG, Brownstein BH, Roti Roti JL (2006): Gene expression does not change significantly in C3H 101'1/2 cells after exposure to 847.74 CDMA or 835.62 FDMA radiofrequency radiation. Rad Res 165, 626 - 635.
Yu D, Shen Y, Kuster N, Fu Y, Chiang H (2006): Effects of 900 MHz GSM wireless communication signals on DMBA-induced mammary tumors in rats. Rad Res 165, 174 - 180.
Zeni O, Chiavoni AS, Sannino A, Antolini A, Forigo D, Bersani F, Scarfi MR (2003): Lack of genotoxic effects (rnicronucleus induction) in human lymphocytes exposed in vitro to 900 MHz electromagnetic fields. Radial Res 160, 152 - 158.
Zeni O, Romano M, Perrotta A, l.ioi MB, Barbieri R, d'Ambrosio G, Massa R, Scarfi MR (2005): Evaluation of genotoxic effects in human peripheral blood leukocytes following an acute in vilro exposure to 900 Mliz radiofrequency fields. Bioelectromagnetics 26, 258 - 265.
Zhang DY, Xu ZP, Chiang H, La DQ, Zeng QL (2006): Effects of GSM 1800 MHz radiofrequency electromagnetic fields on DNA damage in Chinese hamster fing cells. Zhonghua Yu Fang Yi Xue Za Zhi. 40, 149 - 152.
Zotti-Martelli L, Peccatori M, Maggini V, Ballardin M, Barale R (2005): Individual responsiveness to induction of micronuclei in human lymphocytes after exposure in vitro to 1800-MHz microwave radiation. Mutat Res 582, 42 - 52.
ENDE |