umwelt-online: Verordnung (EG) Nr. 440/2008 zur Festlegung von Prüfmethoden gemäß der VO (EG) Nr. 1907/2006 zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH) (24)

UWS Umweltmanagement GmbHzurück

Frame öffnen

C.2 Daphnia-Sp.-Test auf akute Schwimmunfähigkeit

1. Methode

Diese Methode für die Untersuchung auf akute Schwimmunfähigkeit entspricht OECD TG 202 (2004).

1.1 Einleitung

Durch diese Methode wird ein akuter Toxizitätstest beschrieben, mit dem die Wirkung von Chemikalien auf Daphnien bewertet wird. Soweit möglich, wurden bestehende Testmethoden herangezogen (1) (2) (3).

1.2 Definitionen

Im Rahmen der vorliegenden Testmethode werden folgende Definitionen verwendet:

EC50: die geschätzte Konzentration, bei der 50 % der Daphnien innerhalb einer festgelegten Expositionszeit schwimmunfähig werden. Wird eine abweichende Definition verwendet, ist dies zusammen mit der Quelle im Bericht anzugeben.

Schwimmunfähigkeit: Tiere, die nicht innerhalb von 15 Sekunden nach vorsichtigem Umrühren des Testgefäßes schwimmen können, gelten als schwimmunfähig (auch wenn sie noch ihre Antennen bewegen können).

1.3 Prinzip der Testmethode

Junge Daphnien, die zu Beginn des Tests weniger als 24 Stunden alt sind, werden 48 Stunden lang der Testsubstanz bei unterschiedlichen Konzentrationen ausgesetzt. Die Schwimmunfähigkeit wird nach 24 Stunden und 48 Stunden aufgezeichnet und mit Kontrollwerten verglichen. Die Ergebnisse werden zur Berechnung der nach 48 Stunden herrschenden EC50 analysiert (siehe Definition in 1.2). Die Ermittlung der EC50 nach 24 Stunden ist freigestellt.

1.4 Informationen zur Testsubstanz

Wasserlöslichkeit und Dampfdruck der Testsubstanz müssen bekannt sein, und es muss eine zuverlässige Analysenmethode zur Quantifizierung der Substanz in den Testlösungen zur Verfügung stehen, mit der der festgestellte Rückgewinnungsgrad und die Bestimmungsgrenze angegeben werden können. Zu den zweckmäßigen Angaben zählen Strukturformel, Reinheit der Substanz, Stabilität in Wasser oder Licht, Pow und die Ergebnisse eines Tests auf leichte biologische Abbaubarkeit (siehe Methode C.4).

Hinweis: Richtlinien für Tests an Substanzen, deren Test aufgrund ihrer physikalisch-chemischen Eigenschaften schwierig ist, sind in (4) enthalten.

1.5 Referenzsubstanzen

Die Referenzsubstanz kann auf EC50 getestet werden, um auf diese Weise die Zuverlässigkeit der Testbedingungen zu gewährleisten. Hierfür wird die Verwendung von Giftstoffen empfohlen, die in internationalen Ringtests (1) (5) verwendet werden 1. Test(s) mit einer Referenzsubstanz sind möglichst monatlich, mindestens aber zweimal jährlich durchzuführen.

1.6 Qualitätskriterien

Die Tests sind gültig, wenn die folgenden Durchführungskriterien eingehalten werden:

Hinweis: Beim ersten Kriterium dürfen nicht mehr als 10 % der dem Kontrolltest unterzogenen Daphnien Schwimmunfähigkeit oder sonstige Anzeichen von Erkrankungen oder Stress zeigen, z.B. Verfärbungen oder ungewöhnliches Verhalten wie Einschluss an der Wasseroberfläche.

1.7 Beschreibung der Testmethode

1.7.1 Geräte

Die Testgefäße und sonstigen Geräte, die mit den Testlösungen in Kontakt kommen, müssen vollständig aus Glas oder einem anderen chemisch inerten Material bestehen. Als Testgefäße werden normalerweise Reagenzgläser oder Bechergläser verwendet; diese müssen vor jeder Verwendung nach den üblichen Laborverfahren gereinigt werden. Die Testgefäße sind locker abzudecken, um Wasserverlust durch Verdunstung zu verringern und Staubeintritt in die Lösungen zu verhindern. Flüchtige Substanzen sind in vollständig gefüllten, geschlossenen Behältern zu testen, die ausreichend groß sein müssen, so dass verhindert wird, dass durch Sauerstoffmangel eine drosselnde Wirkung eintritt oder der Sauerstoffgehalt zu gering wird (siehe Abschnitt 1.6 und ersten Absatz von Abschnitt 1.8.3).

Zusätzlich werden einige oder alle der folgenden Geräte verwendet: Sauerstoffmessgerät (mit Mikroelektrode oder anderen geeigneten Vorrichtungen für die Messung von gelöstem Sauerstoff in Proben mit geringem Probengehalt), pH-Messgerät, geeignete Geräte für die Temperaturregelung, Geräte für die Ermittlung des Gesamtgehalts an organischen Kohlenstoffverbindungen (TOC), Geräte für die Ermittlung des chemischen Sauerstoffbedarfs (COD) und Geräte für die Härtebestimmung usw.

1.7.2 Testorganismen

Daphnia magna Straus ist die vorzugsweise verwendete Art; allerdings können auch andere Arten der Daphnia für diese Tests verwendet werden (z.B. Daphnia pulex). Zu Beginn des Tests müssen die Tiere weniger als 24 Stunden alt sein; zur Begrenzung von Variabilitäten wird dringend empfohlen, keine Daphnien aus der ersten Nachkommenschaft einer Brut zu verwenden. Die Tiere müssen aus einem gesunden Bestand stammen (d. h., sie dürfen keine Anzeichen von Stress aufweisen, z.B. hohe Mortalität, Vorhandensein von männlichen Tieren und Ephippien, verzögerte Produktion der ersten Brut, Verfärbungen an den Tieren usw.). Alle für einen bestimmten Test verwendeten Organismen müssen aus Kulturen stammen, die aus dem gleichen Daphnienbestand entnommen wurden. Die Elterntiere müssen unter Kulturbedingungen (Licht, Temperatur, Medium) gehalten werden, die den Testbedingungen ähneln. Wird für den Test der Daphnien ein anderes Kulturmedium verwendet als bei den routinemäßigen Daphnienkulturen, sollte dem Test eine Eingewöhnungsphase als Vortest vorausgehen. Hierzu sind die Zuchtdaphnien vor Testbeginn mindestens 48 Stunden lang bei Testtemperatur in Verdünnungswasser zu halten.

1.7.3 Halte- und Verdünnungswasser

Natürliches Wasser (Oberflächen- oder Grundwasser), zubereitetes Wasser oder entchlortes Leitungswasser sind als Halte- und Verdünnungswasser zulässig, wenn die Daphnien hierin während der Zucht-, Akklimatisations- und Testphase ohne Stressanzeichen überleben. Alle Wassersorten, die den chemischen Eigenschaften von zugelassenem Verdünnungswasser gemäß Anlage 1 entsprechen, sind als Testwasser geeignet. Das Wasser muss während der gesamten Testdauer eine gleich bleibende Qualität aufweisen. Zubereitetes Wasser kann durch Zugabe bestimmter Mengen von analysenreinen Reagenzien zu entionisiertem oder destilliertem Wasser hergestellt werden. Beispiele für zubereitetes Wasser sind in (1), (6) und in Anlage 2 enthalten. Dabei ist zu beachten, dass Medien, die bekannte Chelatbildner enthalten, z.B. die Medien M4 und M7 aus Anlage 2, für Tests an metallhaltigen Substanzen zu vermeiden sind. Der pH-Wert muss sich in einem Bereich zwischen 6 und 9 bewegen. Eine Härte zwischen 140 und 250 mg/l (wie CaCO3) wird für Daphnia Magna empfohlen, für andere Daphnia-Arten ist ggf. auch eine geringere Härte geeignet. Das Verdünnungswasser kann vor Verwendung für den Test belüftet werden, bis die Konzentration an gelöstem Sauerstoff die Sättigungsgrenze erreicht hat.

Wird natürliches Wasser verwendet, sind die Qualitätsparameter mindestens zweimal jährlich bzw. immer dann zu messen, wenn der Verdacht besteht, dass sich diese Eigenschaften erheblich verändert haben (siehe vorigen Abschnitt und Anlage 1). Außerdem ist eine Messung auf Schwermetalle (z.B. Cu, Pb, Zn, Hg, Cd, Ni) durchzuführen. Wird entchlortes Leitungswasser verwendet, empfiehlt sich eine tägliche Chloranalyse. Wird Verdünnungswasser aus einer Oberflächenwasser- oder Grundwasserquelle verwendet, sind Leitfähigkeit und der Gesamtgehalt an organischen Kohlenstoffverbindungen (TOC) oder der chemische Sauerstoffbedarf (COD) zu messen.

1.7.4 Testlösungen

Die Testlösungen in der festgelegten Konzentration werden normalerweise durch Verdünnung des Stammansatzes hergestellt. Der Stammansatz ist vorzugsweise durch Lösung der Testsubstanz im Verdünnungswasser herzustellen. Die Verwendung von Lösemitteln, Emulgatoren oder Dispergiermitteln sollte möglichst vermieden werden. Allerdings sind derartige Verbindungen in bestimmten Fällen zur Herstellung eines ausreichend konzentrierten Stammansatzes erforderlich. Richtlinien für geeignete Lösemittel, Emulgatoren und Dispergiermittel sind in (4) nachzulesen. Grundsätzlich darf die Testsubstanz in den Testlösungen die Löslichkeitsgrenze im Verdünnungswasser nicht überschreiten.

Der Test ist ohne Korrektur des pH-Werts durchzuführen. Bleibt der pH-Wert nicht im Bereich zwischen 6 und 9, ist ein zweiter Test durchzuführen, bei dem der pH-Wert des Stammansatzes auf den pH-Wert des Verdünnungswassers vor Zugabe der Testsubstanz korrigiert wird. Die pH-Korrektur muss so erfolgen, dass sich die Konzentration des Stammansatzes nicht nennenswert verändert und keine chemische Reaktion oder Ausfällung der Testsubstanz eintritt. Vorzugsweise sollten HCl und NaOH verwendet werden.

1.8 Durchführung des Tests

1.8.1 Expositionsbedingungen

1.8.1.1 Testgruppen und Kontrollen

Die Testgefäße werden mit Verdünnungswasser und Lösungen der Testsubstanz in geeigneten Volumenanteilen gefüllt. Das Luft-Wasser-Volumenverhältnis im Gefäß muss bei den Test- und Kontrollgruppen identisch sein. Anschließend werden die Daphnien in die Testgefäße eingelegt. Für jede Testkonzentration und für die Kontrollen sind mindestens 20 Tiere zu verwenden, die vorzugsweise in vier Gruppen mit je fünf Tieren aufgeteilt werden sollten. Je Tier sind mindestens 2 ml der Testlösung bereitzustellen (d. h. ein Volumen von 10 ml für fünf Daphnien je Testgefäß). Der Test ist mit einem semistatischen Erneuerungs- oder Durchflusssystem durchzuführen, wenn die Konzentration der Testsubstanz nicht stabil ist.

Zusätzlich zu den Behandlungsreihen sind eine Kontrollreihe mit Verdünnungswasser sowie - sofern relevant - eine Kontrollreihe, die das Solubilisierungsmittel enthält, durchzuführen.

1.8.1.2 Testkonzentrationen

Zur Ermittlung des Konzentrationsbereichs für den endgültigen Test kann ein Vortest durchgeführt werden, sofern nicht Angaben zur Toxizität der Testsubstanz vorliegen. Hierzu werden die Daphnien einer Reihe von weit auseinander liegenden Konzentrationen der Testsubstanz ausgesetzt. Jeder Testkonzentration werden fünf Daphnien über einen Zeitraum von 48 Stunden oder weniger ausgesetzt; wiederholte Gleichtests sind nicht notwendig. Die Expositionsdauer kann verkürzt werden (z.B. auf 24 Stunden oder weniger), wenn über eine kürzere Zeitdauer geeignete Daten für den Vortest ermittelt werden können.

Es sind mindestens fünf Testkonzentrationen zu verwenden. Sie sind in einer geometrischen Reihe mit einem Separierungsfaktor anzuordnen, der einen Wert von 2,2 möglichst nicht überschreiten sollte. Werden weniger als fünf Konzentrationen verwendet, ist eine Begründung vorzulegen. Die höchste getestete Konzentration sollte vorzugsweise eine 100 %ige Schwimmunfähigkeit ergeben, die niedrigste getestete Konzentration sollte vorzugsweise keine wahrnehmbare Wirkung zeigen.

1.8.1.3 Inkubationsbedingungen

Die Temperatur muss im Bereich zwischen 18 °C und 22 °C liegen; für jeden Einzeltest ist die Temperatur auf ± 1 °C konstant zu halten. Es wird ein Zyklus mit 16 Stunden Licht und 8 Stunden Dunkelphase empfohlen. Völlige Dunkelheit ist ebenfalls zulässig, vor allem bei unter Lichteinwirkung instabilen Testsubstanzen.

Die Testgefäße dürfen während des Tests nicht belüftet werden. Der Test wird ohne pH-Korrektur durchgeführt. Die Daphnien dürfen während des Tests nicht gefüttert werden.

1.8.1.4 Testdauer

Die Testdauer beträgt 48 Stunden.

1.8.2 Beobachtungen

Jedes Testgefäß ist 24 und 48 Stunden nach Testbeginn auf schwimmunfähige Daphnien zu kontrollieren (siehe Definitionen in 1.2). Neben der festgestellten Schwimmunfähigkeit sind etwaige Verhaltensauffälligkeiten oder äußerliche Veränderungen im Bericht anzugeben.

1.8.3 Analysemessungen

Der gelöste Sauerstoff und der pH-Wert sind zu Beginn und Ende des Tests in den Kontrollen und in der höchsten Konzentration der Testsubstanz zu messen. Die Konzentration des gelösten Sauerstoffs in den Kontrollen muss dem Validitätskriterium entsprechen (siehe 1.6). Der pH-Wert darf in einem einzigen Test normalerweise nicht um mehr als 1,5 Einheiten variieren. Die Temperatur wird normalerweise in Kontrollgefäßen oder in Umgebungsluft gemessen und ist vorzugsweise durchgehend während des gesamten Tests bzw. zumindest zu Anfang und Ende des Tests aufzuzeichnen.

Die Konzentration der Testsubstanz ist mindestens bei der höchsten und niedrigsten Testkonzentration und zu Beginn und Ende des Tests zu messen (4). Es wird empfohlen, bei den Ergebnissen die gemessenen Konzentrationen zugrunde zu legen. Lässt sich aber nachweisen, dass die Konzentration der Testsubstanz während des gesamten Tests in zufriedenstellender Weise innerhalb von ± 20 % der nominellen oder gemessenen Anfangskonzentration gehalten wurde, können bei den Ergebnissen die nominellen oder gemessenen Anfangswerte zugrunde gelegt werden.

1.9 Limit-Test

Anhand der in dieser Testmethode beschriebenen Verfahren kann ein Limit-Test mit 100 mg/l der Testsubstanz oder bis zum Erreichen der Löslichkeitsgrenze (je nachdem, welcher Wert niedriger ist) durchgeführt werden, um nachzuweisen, dass die EC50 über dieser Konzentration liegt. Der Limit-Test ist an 20 Daphnien (die vorzugsweise in vier Gruppen zu je fünf Tieren aufgeteilt werden sollten) und einer gleichen Anzahl Tiere in den Kontrollgruppen durchzuführen. Wird eine Schwimmunfähigkeit festgestellt, ist eine umfassende Untersuchung durchzuführen. Etwaige beobachtete anormale Verhaltensweisen sind aufzuzeichnen.

2. Daten

Die Daten sind in Tabellenform zusammenzufassen, wobei für jede der Behandlung unterzogenen Gruppe und Kontrollgruppe die Zahl der verwendeten Daphnien und die bei jeder Beobachtung festgestellte Schwimmunfähigkeit angegeben werden. Der prozentuale Anteil der nach 24 Stunden bzw. 48 Stunden schwimmunfähig gewordenen Tiere wird anhand der Testkonzentrationen grafisch dargestellt. Die Daten werden durch geeignete statistische Verfahren (z.B. Probitanalyse) analysiert, mit denen die Steigung der Kurven und die EC50 mit einer Vertrauensgrenze von 95 % berechnet werden kann (p = 0,05) (7) (8).

Können die Standardmethoden für die Berechnung der EC50 nicht auf die ermittelten Daten angewandt werden, sind die höchste Konzentration, bei der keine Schwimmunfähigkeit eintritt, und die niedrigste Konzentration, die zu 100 %iger Schwimmunfähigkeit führt, als Näherungswerte für die EC50 (die das geometrische Mittel dieser beiden Konzentrationen ausdrückt) zugrunde zu legen.

3. Berichterstattung

3.1 Testbericht

Der Testbericht muss folgende Angaben enthalten:

Testsubstanz

Getestete Art

Testbedingungen

Ergebnisse

4. Literaturhinweise

(1) ISO 6341 (1996). Water quality - Determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea) - Acute toxicity test (Wasserbeschaffenheit - Bestimmung der Wirkung von Wasserinhaltsstoffen auf die Bewegungsfähigkeit von Daphnia magna Straus (Cladocera, Crustacea) - Akuter Toxizitätstest). Third edition, 1996.

(2) EPA OPPTS 850.1010 (1996). Ecological Effects Test Guidelines - Aquatic Invertebrate Acute Toxicity Test, Freshwater daphnids.

(3) Environment Canada (1996). Biological test method. Acute Lethality Test Using Daphnia spp. EPS 1/RM/11. Environment Canada, Ottawa, Ontario, Canada.

(4) Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. OECD Environmental Health and Safety Publication. Series on Testing and Assessment. No. 23. Paris 2000.

(5) Kommission der Europäischen Gemeinschaften. Study D8369 (1979). Interlaboratory Test Programme concerning the study of the ecotoxicity of a chemical substance with respect to Daphnia (Laborübergreifendes Testprogramm zur Untersuchung der Ökotoxizität einer chemischen Substanz für Daphnia).

(6) OECD Guidelines for the Testing of Chemicals. Guideline 211: Daphnia magna Reproduction Test, adopted September 1998.

(7) Stephan, C.E (1977). Methods for calculating an LC50. In Aquatic Toxicology and Hazard Evaluation (edited by F.I. Mayer and J.L. Hamelink). ASTM STP 634 - American Society for Testing and Materials, 65-84.

(8) Finney, D.J (1978). Statistical Methods in Biological Assay. 3rd ed. London. Griffin/Weycombe, UK.

.

Chemische Eigenschaften einer geeigneten Zusammensetzung von Verdünnungswasser Anlage 1


SubstanzKonzentration
Partikel< 20 mg/l
Gesamtgehalt an organischen Kohlenstoffen< 2 mg/l
Nicht ionisierter Ammoniak< 1 µg/l
Chlorüberschuss< 10 µg/l
Gesamtgehalt an phosphororganischen Pestiziden< 50 ng/l
Gesamtgehalt an phosphororganischen Pestiziden plus polychlorierten Biphenylen< 50 ng/l
Gesamtgehalt an organischem Chlor< 25 ng/l

.

Beispiele für geeignetes zubereitetes TestwasserAnlage 2

ISO-Testwasser (1)

Stammansatz (Einzelsubstanz)Zur Herstellung von zubereitetem Wasser werden auf 1 Liter Wasser folgende Mengen des Stammansatzes zugesetzt *
Substanz1 Liter Wasser zugesetzte Menge (*)
Kalziumchlorid
CaCl2H2O
11,76 g25 ml
Magnesiumsulfat
MgSO7H2O
4,93 g25 ml
Natriumbicarbonat
NaHCO3
2,59 g25 ml
Kaliumchlorid
KCl
0,23 g25 ml
(*) Wasser in der erforderlichen Reinheit, d. h. entionisiert, destilliert oder einer Umkehrosmose unterzogen, Leitfähigkeit möglichst nicht über 10 µS/cm-1.

Elendt M7- und M4-Medium

Gewöhnung an die Medien Elendt M4 und M7

In verschiedenen Labors sind Schwierigkeiten bei der direkten Umsetzung von Daphnien in die Medien M4 und M7 aufgetreten. Als erfolgreich erwies sich jedoch eine schrittweise Eingewöhnung, d. h. beim Wechsel aus dem eigenen Medium in 30 %iges Elendt-Medium, dann in 60 %iges Elendt-Medium und schließlich in ein 100 %iges Elendt-Medium. Die erforderliche Eingewöhnungszeit kann bis zu einem Monat betragen.

Herstellung

Spurenelemente

Gesonderte Stammansätze (I) einzelner Spurenelemente werden zuerst in Wasser geeigneter Reinheit (d. h. entionisiert, destilliert oder aus Umkehrosmose) hergestellt. Aus diesen unterschiedlichen Stammansätzen (I) wird ein zweiter alleiniger Stammansatz (II) hergestellt, der sämtliche Spurenelemente (kombinierte Lösung) enthält, d. h.:

Stammansatz / Stammansätze I
(Einzelsubstanz)
In Wasser zugesetzte Menge (mg/l)Konzentration (im Verhältnis zu M4)Zur Herstellung des kombinierten Stammansatzes II ist die folgende Menge Stammansatz I zu Wasser zuzusetzen (ml/I)
M4M7
H3 BO357.19020.000-fach1,00,25
MnCl4H2O7.21020.000-fach1,00,25
LiCl6.12020.000-fach1,00,25
RbCl1.42020.000-fach1,00,25
SrCl6H2O3.04020.000-fach1,00,25
NaBr32020.000-fach1,00,25
Na2 MoO2H2O1.23020.000-fach1,00,25
CuCl2H2O33520.000-fach1,00,25
ZnCl226020.000-fach1,01,0
CoCl6H2O20020.000-fach1,01,0
KI6520.000-fach1,01,0
Na2 SeO343,820.000-fach1,01,0
NH4 VO311,520.000-fach1,01,0
Na2 EDTA· 2H2O5.0002.000-fach--
FeSO7H2O1.9912.000-fach--
Na2-EDTA- und FeSO4-Lösungen werden einzeln hergestellt, zusammengegossen und sofort im Autoklav behandelt.
Dies ergibt:
2 l Fe-EDTA-Lösung 1.000-fach20,05,0

Medien M4 und M7

Die Medien M4 und M7 werden unter Verwendung des Stammansatzes II und der folgenden Makronährstoffe und Vitamine hergestellt:

 Dem Wasser zugesetzte Menge (mg/l)Konzentration (bezogen auf Medium M4)Menge an Stammansatz II, die für die Zubereitung des Mediums zugesetzt wird (ml/l)
M4M7
Stammansatz II (kombinierte Spurenelemente)
Makronährstoff-Stammansätze (Einzelsubstanz)
 20-fach5050
CaCl2H2O293.8001.000-fach1,01,0
MgSO7H2O246.6002.000-fach0,50,5
KCl58.00010.000-fach0,10,1
NaHCO364.8001.000-fach1,01,0
Na2 SiO9H2O50.0005.000-fach0,20,2
NaNO32.74010.000-fach0,10,1
KH2 PO41.43010.000-fach0,10,1
K2 HPO41.84010.000-fach0,10,1
Kombinierter Vitaminstamm 10.000-fach0,10,1
Der kombinierte Vitamin-Stammansatz wird durch Zugabe der 3 Vitamine gemäß untenstehender Übersicht zu 1 Liter Wasser hergestellt:
Thiaminhydrochlorid75010.000-fach  
Cyanocobalamin (B12)1010.000-fach  
Biotin7,510.000-fach  

Der kombinierte Vitamin-Stammansatz wird in kleinen Portionen tiefgefroren aufbewahrt. Die Vitamine werden den Medien kurz vor der Verwendung zugesetzt.

Hinweis: Um ein Ausfällen der Salze bei der Herstellung der vollständigen Medien zu vermeiden, sind die Portionen der Stammansätze zu ca. 500 bis 800 ml entionisiertem Wasser zuzugeben und anschließend auf 1 Liter aufzufüllen.

Hinweis: Die erste Veröffentlichung zum Medium M4 ist zu finden bei Elendt, B. P (1990): Selenium deficiency in crustacea; an ultrastructual approach to antennal damage in Daphnia magna Straus. Protoplasma, 154, 25-33.

C.3 Süsswasseralgen und Cyanobakterien:
Wachstumsinhibitionstest
16

Einleitung

1. Diese Prüfmethode entspricht der OECD-Prüfrichtlinie (TG) 201 (2006, Anhang korrigiert im Jahr 2011). Es wurde festgestellt, dass die Prüfmethode auf weitere Arten ausgeweitet und an die Anforderungen an die Risikobewertung und die Klassifizierung chemischer Stoffe angepasst werden muss. Die Überarbeitung wurde auf der Grundlage umfassender praktischer Erfahrungen sowie des wissenschaftlichen Fortschritts im Zusammenhang mit Untersuchungen zur Algentoxizität und der weit reichenden Anwendung entsprechender Rechtsvorschriften seit Annahme der ursprünglichen Fassung vorgenommen.

2. Definitionen der verwendeten Begriffe sind Anlage 1 zu entnehmen.

Prinzip der Prüfmethode

3. Mit dieser Prüfung soll die Wirkung einer Chemikalie auf das Wachstum von Süßwasser-Mikroalgen und/oder Cyanobakterien bestimmt werden. Exponentiell wachsende Testorganismen werden in Batch-Kulturen über einen Zeitraum von im Allgemeinen 72 Stunden der Prüfchemikalie ausgesetzt. Trotz der verhältnismäßig kurzen Testdauer können Auswirkungen über mehrere Generationen beurteilt werden.

4. Die Systemantwort besteht in der Verringerung des Wachstums einer Reihe von Algenkulturen (Versuchseinheiten), die einer Prüfchemikalie in unterschiedlichen Konzentrationen ausgesetzt wurden. Diese Reaktion wird in Abhängigkeit von der Expositionskonzentration gegenüber dem durchschnittlichen Wachstum in der Chemikalie nicht ausgesetzten Replikatkontrollkulturen bewertet. Um die Systemantwort auf toxische Auswirkungen (optimale Empfindlichkeit) umfassend beschreiben zu können, wird ein unbegrenztes exponentielles Wachstum der Kulturen bei hinreichender Ernährung und kontinuierlicher Beleuchtung über einen ausreichenden Zeitraum ermöglicht, damit anschließend die Verringerung der spezifischen Wachstumsrate gemessen werden kann.

5. Wachstum und Wachstumshemmung werden durch zeitabhängige Messung der Biomasse der Algen bestimmt. Die Biomasse der Algen wird als Trockenmasse pro Volumen ausgedrückt (z.B. in mg Algen/Liter Testlösung). Die Trockenmasse ist jedoch schwer zu messen; daher werden Surrogatparameter verwendet. Häufigster Surrogatparameter ist die Zellzahl. Weitere Surrogatparameter sind das Zellvolumen, die Fluoreszenz, die optische Dichte usw. Der Faktor für die Umrechnung zwischen dem gemessenen Surrogatparameter und der Biomasse sollte bekannt sein.

6. Der Endpunkt des Tests ist die Wachstumshemmung, ausgedrückt als logarithmische Zunahme der Biomasse (durchschnittliche spezifische Wachstumsrate) während der Expositionsdauer. Aus den in einer Reihe von Testlösungen erfassten durchschnittlichen spezifischen Wachstumsraten wird die Konzentration bestimmt, bei der sich eine spezifizierte Hemmung der Wachstumsrate von x % (z.B. 50 %) ergibt; diese Konzentration wird als ErCx bezeichnet (z.B. ErC50).

7. Eine weitere Reaktionsvariable bei dieser Prüfmethode ist der Zellertrag (Yield). Diese Variable kann erforderlich sein, damit länderspezifische Regulierungsanforderungen erfüllt werden. Der Zellertrag wird definiert als Biomasse am Ende der Expositionsdauer abzüglich der Biomasse zu Beginn der Expositionsdauer. Aus dem in einer Reihe von Testlösungen erfassten Zellertrag wird die Konzentration berechnet, die eine spezifizierte Hemmung des Zellertrags (z.B. um 50 %) hervorruft; diese Konzentration wird als EyCx angegeben (z.B. EyC50).

8. Außerdem können die niedrigste Konzentration mit beobachteter Wirkung (LOEC) und die höchste geprüfte Konzentration ohne beobachtete Wirkung (NOEC) statistisch bestimmt werden.

Informationen zur Prüfchemikalie

9. Informationen zur Prüfchemikalie, die bei der Bestimmung der Prüfbedingungen hilfreich sein könnten, sind z.B. die Strukturformel, die Reinheit, die Lichtbeständigkeit, die Beständigkeit unter den Prüfbedingungen, das Lichtabsorptionsverhalten, pKa und die Ergebnisse von Transformationsstudien (u. a. die Ergebnisse von Studien zur biologischen Abbaubarkeit in Wasser).

10. Die Wasserlöslichkeit, der Octanol/Wasser-Verteilungskoeffizient (Pow) und der Dampfdruck der Prüfchemikalie sollten bekannt sein, und eine validierte Methode zur Quantifizierung der Chemikalie in den Testlösungen mit bekannten Wiederfindungsraten und mit bekannter Nachweisgrenze sollte verfügbar sein.

Validität des Tests

11. Damit ein Test als valide gewertet werden kann, müssen die folgenden Kriterien erfüllt sein:

Referenzchemikalien

12. Um das Prüfverfahren zu testen, können Referenzchemikalien wie z.B. das im internationalen Ringtest (1) verwendete 3,5-Dichlorphenol geprüft werden. Für Grünalgen kann auch Kaliumdichromat als Referenzchemikalie verwendet werden. Nach Möglichkeit sollten Referenzchemikalien mindestens zweimal jährlich getestet werden.

Anwendbarkeit des Tests

13. Diese Prüfmethode ist am einfachsten bei wasserlöslichen Chemikalien anzuwenden, die unter den Prüfbedingungen voraussichtlich im Wasser gelöst bleiben. Zum Prüfen von flüchtigen, stark adsorbierenden, farbigen und schlecht in Wasser löslichen Chemikalien sowie von Chemikalien, die sich auf die Verfügbarkeit von Nährstoffen oder Mineralien im Prüfmedium auswirken können, sind am beschriebenen Verfahren unter Umständen gewisse Änderungen vorzunehmen (z.B. die Herstellung eines geschlossenen Systems oder eine besondere Vorbereitung der Prüfgefäße). Hinweise zu verschiedenen Änderungen sind den Quellen (2), (3) und (4) zu entnehmen.

Beschreibung der Prüfmethode

Apparatur

14. Prüfgefäße und sonstige Apparaturen, die mit den Testlösungen in Berührung kommen, müssen vollständig aus Glas oder einem anderen chemisch inerten Material bestehen. Die Komponenten sollten gründlich gespült werden, um sicherzustellen, dass keine organischen oder anorganischen Verunreinigungen das Algenwachstum oder die Zusammensetzung der Testlösungen beeinträchtigen können.

15. Als Prüfgefäße kommen im Allgemeinen Glaskolben mit Abmessungen in Betracht, die während des Tests ein hinreichendes Kulturvolumen und einen hinreichenden CO2-Transfer aus der Umgebungsluft gewährleisten (siehe Nummer 30). Das Flüssigkeitsvolumen muss für analytische Bestimmungen hinreichend sein (siehe Nummer 37).

16. Außerdem werden unter Umständen die folgenden Geräte benötigt.

Testorganismen

17. Für die Tests können mehrere Arten frei treibender Mikroalgen und Cyanobakterien verwendet werden. Die in Anlage 2 genannten Stämme haben sich für das in dieser Prüfmethode beschriebene Verfahren als geeignet erwiesen.

18. Wenn andere Arten verwendet werden, sollten der betreffende Stamm und/oder die Herkunft angegeben werden. Außerdem ist sicherzustellen, dass das exponentielle Wachstum der ausgewählten Testalgen während der gesamten Testdauer unter den jeweiligen Bedingungen aufrechterhalten werden kann.

Nährmedium

19. Als Nährmedien werden wahlweise das OECD-Medium oder das AAP-Medium empfohlen. Die Zusammensetzungen dieser Medien sind Anlage 3 zu entnehmen. Beide Medien haben unterschiedliche pH-Ausgangswerte und unterschiedliche Pufferkapazitäten (zur Regulierung des pH-Anstiegs). Daher können die Testergebnisse je nach verwendetem Medium unterschiedlich ausfallen; dies gilt insbesondere für die Prüfung ionisierender Chemikalien.

20. Für bestimmte Zwecke muss unter Umständen das Nährmedium modifiziert werden (z.B. für die Prüfung von Metallen und Chelatbildnern oder für Prüfungen bei unterschiedlichen pH-Werten). Die Verwendung modifizierter Nährmedien ist im Einzelnen zu erläutern und zu begründen (3)(4).

Biomasse-Ausgangskonzentration

21. Die Ausgangsbiomasse der Prüfkulturen muss bei allen Prüfkulturen identisch und so gering sein, dass während der Inkubationsdauer ein exponentielles Wachstum erzielt werden kann, ohne eine Erschöpfung des Nährmediums befürchten zu müssen. Die Ausgangsbiomasse sollte höchstens 0,5 mg/l Trockenmasse betragen. Folgende Ausgangs-Zellkonzentrationen werden empfohlen:

Pseudokirchneriella subcapitata:5 × 103 - 104 Zellen/ml
Desmodesmus subspicatus2-5 × 103 Zellen/ml
Navicula pelliculosa104 Zellen/ml
Anabaena flosaquae104 Zellen/ml
Synechococcus leopoliensis5 × 104 - 105 Zellen/ml

Konzentrationen der Prüfchemikalie

22. Der Konzentrationsbereich, in dem Effekte zu erwarten sind, sollte durch einen Vortest (Range-Finding Test) ermittelt werden. Für den definitiven Test sind mindestens fünf Konzentrationen in einer geometrischen Reihe mit einem Faktor von höchstens 3,2 auszuwählen. Bei Prüfchemikalien mit einer flacheren Konzentrations- Wirkungskurve kann ein höherer Faktor gerechtfertigt sein. Die Konzentrationsreihen sollten vorzugsweise einen Bereich abdecken, in dem das Algenwachstum um 5-75 % gehemmt wird.

Replikate und Kontrollen

23. Das Prüfprotokoll muss für jede Testkonzentration drei Replikate vorsehen. Wenn die NOEC nicht bestimmt werden muss, kann das Prüfprotokoll dahingehend geändert werden, dass die Anzahl der Konzentrationen erhöht und die Anzahl der Replikate verringert wird. Es müssen mindestens drei Kontrollreplikate verwendet werden, im Idealfall die doppelte Anzahl der Replikate für jede Testkonzentration.

24. Für analytische Bestimmungen der Prüfchemikalienkonzentrationen kann eine eigene Reihe von Testlösungen hergestellt werden (siehe Nummern 36 und 38).

25. Wenn zur Auflösung der Prüfchemikalie ein Lösungsmittel verwendet wird, sind weitere Kontrollen mit dem Lösungsmittel in der Konzentration zu testen, die auch in den Prüfkulturen verwendet wird.

Herstellung der Impfkultur

26. Um eine Anpassung der Testalgen an die Testbedingungen zu ermöglichen und um sicherzustellen, dass sich die Algen in der Phase des exponentiellen Wachstums befinden, wenn sie zur Impfung der Testlösungen verwendet werden, wird 2-4 Tage vor Testbeginn im Prüfmedium eine Impfkultur hergestellt. Die Algenbiomasse ist so anzupassen, dass die Impfkultur bis zum Testbeginn exponentiell wachsen kann. Die Impfkultur ist unter den gleichen Bedingungen wie die Prüfkulturen zu inkubieren. Die Zunahme der Biomasse der Impfkultur ist zu messen, um sicherzustellen, dass das Wachstum unter den gegebenen Kulturbedingungen für den jeweiligen Teststamm im normalen Bereich liegt. In Anlage 4 wird ein Beispiel für ein Verfahren zur Herstellung einer Algenkultur beschrieben. Um gleichzeitige Zellteilungen während des Tests zu vermeiden, kann unter Umständen ein zweiter Schritt zur Vermehrung der Impfkultur erforderlich sein.

Herstellung der Testlösungen

27. Alle Testlösungen müssen das Nährmedium und die Ausgangsbiomasse der Testalgen in denselben Konzentrationen enthalten. Die Testlösungen in den ausgewählten Konzentrationen werden gewöhnlich durch Mischen einer Stammlösung der Prüfchemikalie mit dem Nährmedium und der Impfkultur hergestellt. Stammlösungen werden im Allgemeinen durch Auflösung der betreffenden Chemikalie im Prüfmedium hergestellt.

28. Wenn Chemikalien mit geringer Wasserlöslichkeit zum Prüfmedium hinzugegeben werden sollen, können Lösungsmittel (z.B. Aceton, t-Butyl-Alkohol und Dimethylformamid) als Träger verwendet werden (2)(3). Die Lösungsmittelkonzentration sollte höchstens 100 µl/l betragen, und für alle Kulturen der Testreihen (einschließlich der Kontrollkulturen) ist die gleiche Konzentration zu verwenden.

Inkubation

29. Die Prüfgefäße sind mit luftdurchlässigen Stopfen zu versehen. Anschließend werden die Gefäße geschüttelt und in die Kulturapparatur gebracht. Während des Tests müssen die Algen suspendiert bleiben, und der CO2- Transfer muss unterstützt werden. Dazu sollten die Gefäße ständig geschüttelt oder umgerührt werden. Die Temperatur der Kulturen wird bei einer Toleranz von ± 2 °C ständig auf 21 bis 24 °C geregelt. Bei anderen als den in Anlage 2 genannten Arten (z.B. bei tropischen Arten) sind unter Umständen höhere Temperaturen angemessen, die Validitätskriterien müssen jedoch erfüllt sein. Es wird empfohlen, die Gefäße zufällig verteilt und täglich neu in den Inkubator einzusetzen.

30. Der pH-Wert des Kontrollmediums darf während des Tests höchstens um 1,5 Einheiten steigen. Bei Metallen und Chemikalien, die bei pH-Werten etwa im Bereich der im Test verwendeten pH-Werte teilweise ionisieren, muss die pH-Verschiebung möglicherweise begrenzt werden, um reproduzierbare und gut definierte Ergebnisse zu erhalten. Es ist technisch möglich, die Verschiebung auf < 0,5 pH-Einheiten zu begrenzen, indem ein angemessener CO2-Transfer aus der Umgebungsluft in die Testlösung sichergestellt wird (z.B. durch stärkeres Schütteln). Eine weitere Möglichkeit besteht in der Verringerung des CO2-Bedarfs durch Verringerung der Ausgangsbiomasse oder in einer Verkürzung der Testdauer.

31. Die Oberfläche, auf der die Kulturen inkubiert werden, sollte kontinuierlich und gleichförmig fluoreszierend beleuchtet werden (z.B. mit den Lichtfarben kaltweiß (,coolwhite") oder mit Tageslicht (,daylight"). Algen- und Cyanobakterienstämme stellen unterschiedliche Anforderungen an die Lichtverhältnisse. Die Lichtintensität sollte entsprechend den verwendeten Testorganismen gewählt werden. Bei den empfohlenen Grünalgenarten ist für die Testlösungen eine Lichtintensität von 60-120 µE m- 2 s- 1 zu wählen (bei Messung im photosynthetisch wirksamen Spektralbereich von 400-700 nm mit einem geeigneten Rezeptor). Einige Arten, insbesondere Anabaena flosaquae, wachsen bei geringeren Lichtintensitäten und können durch größere Lichtintensitäten beschädigt werden. Bei diesen Arten sollte die durchschnittliche Lichtintensität im Bereich 40-60 µE·m- 2·s- 1 liegen. (Bei in Lux kalibrierten Lichtmessgeräten entspricht der Bereich 4.440-8.880 lx für die Lichtfarbe ,cool- white" etwa der empfohlenen Lichtintensität von 60-120 µE m- 2·s- 1. Die Lichtintensität darf um höchstens ± 15 % von der durchschnittlichen Lichtintensität über dem Inkubationsbereich abweichen.

Testdauer

32. Im Allgemeinen dauert der Test 72 Stunden. Allerdings sind auch kürzere oder längere Testzeiten möglich, sofern alle unter Nummer 11 genannten Validitätskriterien eingehalten werden.

Messungen und analytische Bestimmungen

33. Die Algenbiomasse in den einzelnen Kolben wird während der Testdauer mindestens einmal täglich überprüft. Wenn die Messungen an kleinen Volumina vorgenommen werden, die aus der Testlösung pipettiert wurden, sollten die betreffenden Volumina nicht ersetzt werden.

34. Die Biomasse wird durch manuelle Zählung der Zellen unter dem Mikroskop oder mit einem elektronischen Teilchenzähler (bei Zellzahlen und/oder Biovolumen) ermittelt. Alternative Verfahren wie z.B. die Messung mit einem Durchflusszytometer, in vitro und/oder in vivo durchgeführte Chlorophyll-Fluoreszenzmessungen (5)(6) oder Messungen der optischen Dichte kommen in Betracht, wenn in dem für den jeweiligen Test maßgeblichen Biomassebereich eine befriedigende Korrelation mit der Biomasse nachgewiesen werden kann.

35. Der pH-Wert der Lösungen wird am Anfang und am Ende des Tests bestimmt.

36. Wenn ein Analyseverfahren zur Bestimmung der Testsubstanz im maßgeblichen Konzentrationsbereich durchführbar ist, sind die Testlösungen zu analysieren, um die Ausgangskonzentrationen und die Aufrechterhaltung der Expositionskonzentrationen während der Tests zu prüfen bzw. sicherzustellen.

37. Die Analyse der Prüfchemikalienkonzentration am Anfang und am Ende des Tests bei einer niedrigen und einer hohen Testkonzentration sowie bei einer Konzentration im zu erwartenden EC50-Bereich kann hinreichend sein, wenn anzunehmen ist, dass die Expositionskonzentrationen während des Tests um weniger als 20 % von den Nominalwerten abweichen. Wenn die Konzentrationen eher nicht im Bereich von 80-120 % der nominellen Konzentrationen bleiben werden, wird die Analyse sämtlicher Testkonzentrationen am Anfang und am Ende der Tests empfohlen. Bei flüchtigen, instabilen oder stark adsorbierenden Prüfchemikalien werden während der Expositionsdauer weitere Probenahmen zur Durchführung von Analysen in Abständen von jeweils 24 Stunden empfohlen, um den Verlust der Prüfchemikalie besser bestimmen zu können. Bei diesen Chemikalien werden zusätzliche Replikate benötigt. In jedem Fall müssen die Prüfchemikalienkonzentrationen für alle Testkonzentrationen bei den Replikaten jeweils nur für ein Gefäß (bzw. für den Inhalt der gepoolten Gefäße der jeweiligen Replikate) bestimmt werden.

38. Eigens für die Analyse von Expositionskonzentrationen während der Testdauer hergestellte Prüfmedien werden auf die gleiche Weise behandelt wie die für die Tests verwendeten Medien, d. h. die Medien müssen mit Algen geimpft und unter identischen Bedingungen inkubiert werden. Wenn eine Analyse der gelösten Prüfchemikalie erforderlich ist, müssen die Algen unter Umständen vom Medium getrennt werden. Die Trennung sollte vorzugsweise durch Zentrifugierung mit einer so geringen Beschleunigung erfolgen, die gerade ausreicht, damit die Algen sich absetzen.

39. Wenn nachgewiesen wird, dass die Konzentration der Prüfchemikalie während der gesamten Testdauer zufriedenstellend im Bereich von ± 20 % der Nominalkonzentration oder der gemessenen Ausgangskonzentration aufrechterhalten werden konnte, können die Ergebnisse auch ausgehend von den Nominalwerten bzw. von den gemessenen Ausgangswerten analysiert werden. Wenn die Abweichung von der Nominalkonzentration oder von der gemessenen Ausgangskonzentration mehr als ± 20 % beträgt, sollte bei der Analyse der Ergebnisse von der geometrischen mittleren Konzentration während der Expositionsdauer oder von Modellen ausgegangen werden, welche den Rückgang der Prüfchemikalienkonzentration beschreiben (3)(7).

40. Der Test zur Hemmung des Algenwachstums ist ein dynamischeres Prüfsystem als die meisten sonstigen aquatischen Toxizitätstests mit kürzerer Testdauer. Entsprechend sind die tatsächlichen Expositionskonzentrationen unter Umständen schwer zu bestimmen; dies gilt besonders für adsorbierende Chemikalien, die bei niedrigen Konzentrationen getestet werden. In diesen Fällen bedeutet das Verschwinden der Prüfchemikalie aus der Lösung infolge der Adsorption an die zunehmende Algenbiomasse nicht, dass das Prüfsystem die Chemikalie ,verliert". Bei der Analyse des Testergebnisses ist zu prüfen, ob ein Rückgang der Prüfchemikalienkonzentration im Laufe des Tests mit einer Abnahme der Wachstumshemmung einhergeht. Wenn dies der Fall ist, kann der Einsatz eines geeigneten Modells zur Beschreibung des Rückgangs der Prüfchemikalienkonzentration (7) in Betracht gezogen werden. Ansonsten empfiehlt es sich unter Umständen, bei der Analyse der Ergebnisse von den Ausgangskonzentrationen (Nominalkonzentrationen oder gemessenen Konzentrationen) auszugehen.

Sonstige Beobachtungen

41. Durch Beobachtung unter dem Mikroskop wird sichergestellt, dass die Impfkultur normal und gesund wirkt; außerdem können unter dem Mikroskop am Ende des Tests gegebenenfalls Auffälligkeiten an den Algen festgestellt werden (die z.B. auf die Exposition gegenüber der Prüfchemikalie zurückzuführen sein könnten).

Limit-Test

42. Unter gewissen Umständen, z.B. wenn ein Vortest darauf hindeutet, dass die Prüfchemikalie bei Konzentrationen bis zu 100 mg/l bzw. bis zur Löslichkeitsgrenze im Prüfmedium (maßgeblich ist die jeweils niedrigere Konzentration) keine toxische Wirkung hat, kann ein Limit-Test durchgeführt werden, in dem die Reaktionen einer Kontrollgruppe und einer Behandlungsgruppe (100 mg/l bzw. eine der Löslichkeitsgrenze entsprechende Konzentration) verglichen werden. Es wird nachdrücklich empfohlen, diese Tests durch Analysen der Expositionskonzentration zu verifizieren. Alle oben beschriebenen Testbedingungen und Validitätskriterien gelten für Limit-Tests; allerdings sollten mindestens sechs Replikate pro Prüfkonzentration verwendet werden. Die Reaktionsvariablen in den Kontrollgruppen und den Behandlungsgruppen können mit einem statistischen Test zum Vergleich der Mittelwerte analysiert werden (z.B. mit einem Student-t-Test). Wenn keine Varianzenhomogenität vorliegt, wird ein angepasster t-Test durchgeführt.

Daten und Berichterstattung

Grafische Darstellung der Wachstumskurven

43. Die Biomasse in den Prüfgefäßen kann in Einheiten des für die Messung verwendeten Surrogatparameters ausgedrückt werden (z.B. als Zellzahl oder Fluoreszenz).

44. Die geschätzte Biomassekonzentration der Prüfkulturen und der Kontrollkulturen ist zusammen mit den mindestens zu jeder vollen Stunde zu erfassenden Konzentrationen der Prüfchemikalie und den Messzeitpunkten in Tabellen zusammenzustellen und für die Erstellung von Wachstumskurven zu verwenden. In diesem ersten Stadium können sowohl logarithmische Skalen als auch lineare Skalen angebracht sein; während der Testdauer sind jedoch logarithmische Skalen zu verwenden, die im Allgemeinen eine bessere Darstellung von Abweichungen der Wachstumsstrukturen ermöglichen. Exponentielles Wachstum ergibt auf einer logarithmischen Skala aufgetragen eine Gerade, und die Steigung der Geraden gibt die Wachstumsrate an.

45. Mithilfe der Kurven ist zu untersuchen, ob die Kontrollkulturen während der gesamten Testdauer mit der erwarteten Geschwindigkeit exponentiell wachsen. Alle Datenpunkte sowie der Verlauf der Kurven sind kritisch zu prüfen, und Ausgangsdaten und Verfahren sind auf mögliche Fehler zu kontrollieren. Insbesondere sind alle Datenpunkte zu prüfen, die aufgrund eines systematischen Fehlers abzuweichen scheinen. Wenn Verfahrensfehler zweifelsfrei festgestellt und/oder als sehr wahrscheinlich betrachtet werden können, wird der betreffende Datenpunkt als Ausreißer gekennzeichnet und nicht in die anschließende statistische Analyse einbezogen. (Eine Algenkonzentration von null in einem von zwei drei Replikatgefäßen kann darauf hindeuten, dass das Gefäß nicht ordnungsgemäß geimpft oder nicht angemessen gereinigt wurde.) Die Gründe für den Ausschluss eines als Ausreißer eingestuften Datenpunkts sind im Prüfbericht genau anzugeben. Als Begründungen werden ausschließlich (seltene) Verfahrensfehler, nicht aber einfach ungenaue Messungen anerkannt. Statistische Verfahren zur Bestimmung von Ausreißern sind bei dieser Art von Problemen von begrenztem Nutzen und können die Beurteilung durch Fachleute nicht ersetzen. Die Ausreißer sollten (als solche gekennzeichnet) vorzugsweise in den später in grafischen oder tabellarischen Darstellungen von Datenpunkten enthalten sein.

Reaktionsvariablen

46. Mit der Prüfung sollen die Auswirkungen der Prüfchemikalie auf das Algenwachstum bestimmt werden. Da in unterschiedlichen Rechtsordnungen unterschiedliche Präferenzen und rechtliche Anforderungen bestehen, werden in dieser Prüfmethode zwei Reaktionsvariablen beschrieben. Damit die Testergebnisse in allen Rechtsordnungen anerkannt werden können, sollten die Auswirkungen mit Hilfe der beiden im Folgenden beschriebenen Reaktionsvariablen a und b beurteilt werden:

  1. Durchschnittliche spezifische Wachstumsrate: Diese Reaktionsvariable wird ausgehend von der täglichen logarithmischen Zunahme der Biomasse während der Testdauer berechnet.
  2. Zellertrag: Diese Reaktionsvariable ergibt sich aus der Biomasse am Ende des Tests abzüglich der Biomasse zu Beginn des Tests.

47. Es wird darauf hingewiesen, dass die mit diesen beiden Reaktionsvariablen berechneten Toxizitätswerte nicht vergleichbar sind; der entsprechende Unterschied muss bei der Verwendung der Testergebnisse berücksichtigt werden. Die aufgrund der durchschnittlichen spezifischen Wachstumsrate (ErCx) berechneten Werte für ECx werden im Allgemeinen höher sein als die anhand des Zellertrags (EyCx) ermittelten Werte, wenn die für diese Testmethode vorgesehenen Bedingungen eingehalten werden; dies ist auf die unterschiedliche mathematische Grundlage der beiden Verfahren zurückzuführen. Die auftretenden Unterschiede sollten jedoch nicht als Anzeichen für eine unterschiedliche Empfindlichkeit der beiden Reaktionsvariablen betrachtet werden; beide Werte sind einfach mathematisch verschieden. Das Konzept der durchschnittlichen spezifischen Wachstumsrate beruht auf dem im Allgemeinen exponentiellen Verlauf des Algenwachstums bei nicht begrenzten Kulturen, bei denen die Toxizität aufgrund der Auswirkungen auf die Wachstumsrate ermittelt wird, ohne jedoch von der absoluten Höhe der jeweiligen Wachstumsrate der Kontrollprobe, von der Steigung der Konzentrations- Wirkungskurve oder von der Testdauer abhängig zu sein. Auf der Reaktionsvariable 'Zellertrag' beruhende Ergebnisse hingegen hängen von allen übrigen genannten Variablen ab. EyCx ist von der spezifischen Wachstumsrate der in den einzelnen Tests verwendeten Algenarten sowie von der maximalen spezifischen Wachstumsrate abhängig, die je nach Art sowie sogar zwischen den einzelnen Algenstämmen unterschiedlich sein kann. Diese Reaktionsvariable sollte nicht verwendet werden, um die Empfindlichkeit von Algenarten oder auch nur verschiedener Algenstämme gegenüber Giftstoffen zu vergleichen. Die Verwendung der durchschnittlichen spezifischen Wachstumsrate zur Ermittlung der Toxizität wird in der Wissenschaft bevorzugt; bei dieser Prüfmethode werden jedoch auch Toxizitätsschätzungen aufgrund des Zellertrags berücksichtigt, um den derzeitigen Regulierungsanforderungen in einigen Ländern Rechnung zu tragen.

Durchschnittliche Wachstumsrate

48. Die durchschnittliche spezifische Wachstumsrate in einem bestimmten Zeitraum wird mit Hilfe der folgenden Formel als logarithmische Zunahme der Biomasse für die Gefäße mit den verschiedenen Kontrollproben und mit den behandelten Proben berechnet [1]:

Bild [1],

Dabei sind:

µi-j: durchschnittliche spezifische Wachstumsrate zwischen Zeitpunkt i und Zeitpunkt j;

Xi: Biomasse zum Zeitpunkt i

Xj: Biomasse zum Zeitpunkt j

Für jede Behandlungsgruppe und für jede Kontrollgruppe sind die mittlere Wachstumsrate sowie die Konfidenzintervalle zu berechnen.

49. Die durchschnittliche spezifische Wachstumsrate wird über die gesamte Testdauer (im Allgemeinen Tage 0-3) berechnet; dabei ist eher von der geimpften Nominalbiomasse als von einem gemessenen Ausgangswert auszugehen, da auf diese Weise gewöhnlich eine höhere Genauigkeit erzielt wird. Wenn die zur Messung der Biomasse verwendete Ausrüstung eine hinreichend genaue Bestimmung der Biomasse mit der geringen Masse des Inokulums zulässt (z.B. ein Durchflusszytometer), kann die gemessene Konzentration der Ausgangsbiomasse angenommen werden. Außerdem ist während der gesamten Testdauer (Tage 0-1, 1-2 und 2-3) die sektionale Wachstumsrate als tägliche spezifische Wachstumsrate zu ermitteln und zu prüfen, ob das Wachstum der Kontrollgruppe konstant bleibt (siehe Gültigkeitskriterien, Nummer 11). Eine spezifische Wachstumsrate, die an einem bestimmten Tag signifikant niedriger ist als die durchschnittliche spezifische Gesamtwachstumsrate, kann Anzeichen für eine 'Lag'-Phase sein. Bei den Kontrollkulturen kann eine 'Lag'-Phase minimiert und praktisch ausgeschlossen werden, wenn die Vorkultur in geeigneter Weise vermehrt wird; bei den behandelten Kulturen hingegen kann eine 'Lag'-Phase Anzeichen für eine Erholung nach anfänglicher toxischer Belastung oder Anzeichen für eine geringere Belastung infolge eines Verlustes der Prüfchemikalie (u. a. durch Sorption in die Algenbiomasse) nach der anfänglichen Behandlung sein. Entsprechend kann die sektionale Wachstumsrate bewertet werden, um die Auswirkungen der Prüfchemikalie während der Expositionsdauer zu beurteilen. Erhebliche Unterschiede zwischen der sektionalen Wachstumsrate und der durchschnittlichen Wachstumsrate deuten auf Abweichungen vom konstanten exponentiellen Wachstum hin und erfordern eine genaue Überprüfung der Wachstumskurve.

50. Die prozentuale Hemmung der Wachstumsrate jedes Behandlungsreplikats ist mit folgender Formel zu berechnen:

Bild [2],

Dabei sind:

%Ir = Hemmung der durchschnittlichen spezifischen Wachstumsrate in Prozent;

µC = mittlere durchschnittliche spezifische Wachstumsrate (µ) der Kontrollgruppe;

µT = durchschnittliche spezifische Wachstumsrate des Behandlungsreplikats.

51. Wenn die Testlösungen mit Lösungsmitteln hergestellt werden, sollten zur Berechnung der prozentualen Hemmung eher die Kontrolllösungen mit dem Lösungsmittel als die Kontrolllösungen ohne das Lösungsmittel verwendet werden.

Zellertrag

52. Der Zellertrag wird für alle Gefäße mit Kontrolllösungen und mit behandelten Lösungen als Biomasse bei Ende des Tests abzüglich der Biomasse am Anfang des Tests berechnet. Für die Testkonzentrationen und für die Kontrolllösungen ist jeweils ein mittlerer Zellertrag zu berechnen; die Varianzen sind jeweils zu schätzen. Die prozentuale Hemmung des Zellertrags (%Iy) kann für jedes Behandlungsreplikat wie folgt berechnet werden:

Bild

 [3],

Dabei sind:

% Iy = prozentuale Hemmung des Zellertrags

YC = mittlerer Zellertrag der Kontrollgruppe

YT = Zellertrag des Behandlungsreplikats.

Grafische Darstellung der Konzentrations-Wirkungskurve

53. Die prozentuale Hemmung ist bezogen auf den Logarithmus der Prüfchemikalienkonzentration grafisch darzustellen und sorgfältig zu überprüfen; dabei sind alle Datenpunkte zu verwerfen, die in der ersten Phase als Ausreißer identifiziert wurden. Die Datenpunkte sind nach visueller oder rechnergestützter Interpolation zu einer gleichmäßigen Kurve zu verbinden, um einen ersten Eindruck von der Beziehung zwischen den verschiedenen Konzentrationen und Wirkungen zu erhalten. Anschließend ist mit einer differenzierteren Methode (vorzugsweise mit einer rechnergestützten statistischen Methode) fortzufahren. Je nach der beabsichtigten Verwendung der Daten, der Qualität (Genauigkeit) und dem Umfang der Daten sowie nach der Verfügbarkeit von Werkzeugen zur Analyse der Daten kann (gelegentlich durchaus berechtigt) entschieden werden, die Datenanalyse in diesem Stadium zu beenden und einfach die wesentlichen Werte für EC50 und EC10 (und/oder EC20) aus der nach visueller Interpolation erstellten Kurve zu entnehmen (siehe auch folgender Abschnitt zu stimulierenden Auswirkungen). Die folgenden Gründe können dafür sprechen, von der Anwendung einer statistischen Methode abzusehen:

Statistische Verfahren

54. Ziel ist die Ermittlung einer quantitativen Konzentrations-Wirkungsbeziehung durch Regressionsanalyse. Im Anschluss an eine linearisierte Transformation der Reaktionsdaten (z.B. in Einheiten nach dem Probit-, Logit- oder Weibull-Modell) (8) kann eine gewichtete lineare Regression vorgenommen werden; nichtlineare Regressionsverfahren, mit denen die unvermeidlichen Unregelmäßigkeiten der Daten und Abweichungen von gleichförmigen Verteilungen besser verarbeitet werden können, werden jedoch bevorzugt. Gegen null bzw. gegen die vollständige Hemmung können diese Unregelmäßigkeiten durch die Transformation vergrößert werden und die Analyse beeinträchtigen (8). Es wird darauf hingewiesen, dass Standard-Analysemethoden mit Probit-, Logit- oder Weibull-Transformationen für quantale Daten (z.B. Mortalität oder Überlebensraten) vorgesehen sind und zur Anwendung in Verbindung mit Wachstums- oder Biomassedaten modifiziert werden müssen. Spezifische Verfahren zur Bestimmung von ECx-Werten aus kontinuierlichen Daten sind den Quellen (9), (10) und (11) zu entnehmen. In Anlage 5 wird der Einsatz nichtlinearer Regressionsanalysen näher erläutert.

55. Für jede zu analysierende Reaktionsvariable sind aufgrund der Konzentrations-Wirkungsbeziehung ECx-Werte zu ermitteln. Nach Möglichkeit sollten für alle ECx-Werte die 95- %-Konfidenzintervalle bestimmt werden. Die Qualität der Übereinstimmung der Reaktionsdaten mit dem Regressionsmodell wird grafisch oder statistisch bewertet. Die Regressionsanalyse muss mit den Reaktionen der einzelnen Replikate (und nicht mit den Mittelwerten der Behandlungsgruppe) durchgeführt werden. Wenn eine nichtlineare Kurvenanpassung jedoch schwierig oder wegen zu großer Streuung der Daten nicht möglich ist, kann die Regression auch bezogen auf die Mittelwerte der Gruppe vorgenommen werden, um so auf einfache Weise die Auswirkungen erwarteter Ausreißer zu reduzieren. Wenn von dieser Möglichkeit Gebrauch gemacht wird, sollte dies im Prüfbericht als Abweichung vom normalen Verfahren vermerkt und darauf hingewiesen werden, dass mit Kurvenanpassungen der einzelnen Replikate kein befriedigendes Ergebnis erzielt wurde.

56. Schätzwerte für EC50 und für die Konfidenzintervalle können auch durch lineare Interpolation mit einem Bootstrapping-Algorithmus (13) erzielt werden, wenn die verfügbaren Regressionsmodelle/-methoden für die betreffenden Daten nicht geeignet sind.

57. Um die LOEC und entsprechend die NOEC zu schätzen sowie um die Auswirkungen der Prüfchemikalie auf die Wachstumsrate zu ermitteln, müssen die Mittelwerte der behandelten Proben mit Verfahren zur Varianzanalyse (ANOVA) verglichen werden. Der Mittelwert der einzelnen Konzentrationen ist dann mit einer geeigneten Methode zur Durchführung von Mehrfachvergleichen bzw. zur Durchführung von Trendtests mit dem Mittelwert der Kontrollgruppe zu vergleichen. Dunnett- und Williams-Tests können hilfreich sein (12)(14)(15) (16)(17). Die ANOVA-Annahme der Varianzhomogenität muss einer Überprüfung unterzogen werden. Die entsprechende Bewertung kann anhand einer grafischen Darstellung oder aufgrund eines formalen Tests vorgenommen werden (17). Geeignet sind Levene- und Bartlett-Tests. Wenn die Annahme der Varianzhomogenität nicht erfüllt ist, kann gelegentlich eine Korrektur durch logarithmische Datentransformation erfolgen. Bei außerordentlicher Varianzheterogenität, die durch Transformation nicht korrigiert werden kann, sollten Analysemethoden wie z.B. Jonckheere-Trendtests (Stepdown) erwogen werden. Weitere Hinweise zur Bestimmung von NOEC-Werten sind Quelle (11) zu entnehmen.

58. Aufgrund neuer Forschungsergebnisse wird empfohlen, das Konzept der NOEC aufzugeben und durch Punktschätzungen von ECx-Werten zu ersetzen, die durch Regression ermittelt wurden. Für diesen Algentest wurde noch kein geeigneter Wert für x definiert. Ein Bereich von 10 bis 20 % scheint geeignet (je nach ausgewählter Reaktionsvariable); vorzugsweise sollten sowohl EC10 als auch EC20 protokolliert werden.

Wachstumsstimulation

59. Gelegentlich wird bei niedrigen Konzentrationen eine Wachstumsstimulation (negative Hemmung) beobachtet. Diese Wachstumsstimulation kann entweder auf eine Hormesis (,toxische Stimulation") oder darauf zurückzuführen sein, dass im verwendeten Minimalmedium mit dem zu prüfenden Material zusätzliche das Wachstum stimulierende Faktoren zum Tragen kommen. Die Zugabe anorganischer Nährstoffe sollte keine unmittelbaren Auswirkungen haben, weil das Prüfmedium während der gesamten Testdauer ohnehin überschüssige Nährstoffe enthalten sollte. Eine Stimulation mit niedriger Dosierung kann bei Berechnungen von EC50 gewöhnlich übergangen werden, wenn die Stimulation nicht ungewöhnlich stark ist. Bei ungewöhnlich starker Stimulation oder wenn ein ECx-Wert für einen niedrigen x-Wert berechnet werden soll, sind möglicherweise jedoch besondere Verfahrensweisen erforderlich. Die Löschung von Stimulationsreaktionen aus der Datenanalyse sollte nach Möglichkeit vermieden werden, und wenn die verfügbare Software zur Kurvenanpassung nicht in der Lage ist, geringere Stimulationen zu verarbeiten, kann eine lineare Interpolation mit einem Bootstrapping-Algorithmus vorgenommen werden. Bei ungewöhnlich starker Stimulation kann der Einsatz eines Hormesis-Modells erwogen werden (18).

Nicht toxische Wachstumshemmung

60. Licht absorbierende Prüfmaterialien können zu einer Verringerung der Wachstumsrate führen, weil die Abdunklung den Anteil des verfügbaren Lichts verringert. Diese physikalischen Auswirkungen sollten durch geeignete Modifikation der Testbedingungen von toxischen Auswirkungen unterschieden und getrennt protokolliert werden. Entsprechende Hinweise sind den Quellen (2) und (3) zu entnehmen.

Prüfbericht

61. Der Prüfbericht muss folgende Informationen enthalten:

Prüfchemikalie:

Im Test verwendete Art:

Prüfbedingungen:

Ergebnisse:

Literatur

(1) ISO (1993). ISO 8692 Wasserbeschaffenheit - Süßwasseralgen-Wachstumshemmtest mit einzelligen Grünalgen.

(2) ISO (1998). ISO/DIS 14442. Wasserbeschaffenheit - Anleitung für Algenwachstumshemmtests in Gegenwart schwer löslicher Materialien, flüchtigen Verbindungen, Metallen und Abwasser.

(3) OECD (2000). Guidance Document on Aquatic Toxicity Testing of Difficult Substances and mixtures. Environmental Health and Safety Publications. Series on Testing and Assessment, no. 23. Organisation for Economic Cooperation and Development, Paris.

(4) ISO (1998). ISO 5667-16 Wasserbeschaffenheit - Probenahme - Teil 16: Anleitung zur Probenahme und Durchführung biologischer Testverfahren.

(5) Mayer, P., Cuhel, R., und Nyholm, N. (1997). A simple in vitro fluorescence method for biomass measurements in algal growth inhibition tests. Water Research 31: 2525-2531.

(6) Slovacey, R.E., und Hanna, P.J. (1997). In vivo fluorescence determinations of phytoplancton chlorophyll, Limnology & Oceanography 22: 919-925

(7) Simpson, S.L., Roland, M.G.E., Stauber, J.L., und Batley, G.E. (2003). Effect of declining toxicant concentrations on algal bioassay endpoints. Environ. Toxicol. Chem. 22: 2073-2079.

(8) Christensen, E.R., Nyholm, N. (1984). Ecotoxicological Assays with Algae: Weibull Dose-Response Curves. Env. Sci. Technol. 19: 713-718.

(9) Nyholm, N. Sørensen, P.S., Kusk, K.O., und Christensen, E.R. (1992). Statistical treatment of data from microbial toxicity tests. Environ. Toxicol. Chem. 11: 157-167.

(10) Bruce, R.D., und Versteeg, D.J. (1992). A statistical procedure for modelling continuous toxicity data. Environ. Toxicol. Chem. 11: 1485-1494.

(11) OECD (2006). Current Approaches in the Statistical Analysis of Ecotoxicity Data: A Guidance to Application. Organisation for Economic Cooperation and Development, Paris.

(12) Dunnett, C.W. (1955). A multiple comparisons procedure for comparing several treatments with a control. J. Amer. Statist. Assoc. 50: 1096-1121

(13) Norberg-King T.J. (1988). An interpolation estimate for chronic toxicity: The ICp approach. National Effluent Toxicity Assessment center Technical Report 05-88. US EPA, Duluth, MN.

(14) Dunnett, C.W. (1964). New tables for multiple comparisons with a control. Biometrics 20: 482-491.

(15) Williams, D.A. (1971). A test for differences between treatment means when several dose levels are compared with a zero dose control. Biometrics 27: 103-117.

(16) Williams, D.A. (1972). The comparison of several dose levels with a zero dose control. Biometrics 28: 519- 531.

(17) Draper, N.R., und Smith, H. (1981). Applied Regression Analysis, second edition. Wiley, New York.

(18) Brain, P., und Cousens, R. (1989). An equation to describe doseresponses where there is stimulation of growth at low doses. Weed Research, 29, 93-96.

.

BegriffsbestimmungenAnlage 1
Bei dieser Prüfmethode werden die folgenden Begriffsbestimmungen zugrunde gelegt und folgende Abkürzungen verwendet:

Biomasse: Trockenmasse lebenden Materials einer Population bezogen auf ein gegebenes Volumen (z.B. mg Algen/ Liter Testlösung). Gewöhnlich bezeichnet der Begriff 'Biomasse' eine Masse; in Rahmen dieser Prüfung wird er allerdings zur Bezeichnung einer Masse pro Volumen verwendet. Typischerweise werden Surrogate für die betreffende Biomasse (z.B. Zellzahlen oder Fluoreszenz) gemessen; entsprechend bezieht sich der Begriff 'Biomasse' auch auf diese Surrogatparameter.

Chemikalie: ein Stoff oder eine Mischung.

Variationskoeffizient: ein dimensionsloses Maß für die Veränderlichkeit eines Parameters, definiert als Verhältnis der Standardabweichung zum Mittelwert. Der Variationskoeffizient kann auch als Prozentwert ausgedrückt werden. Der mittlere Variationskoeffizient der durchschnittlichen spezifischen Wachstumsrate bei Replikatkontrollkulturen wird wie folgt berechnet:

  1. Der Variationskoeffizient in Prozent (VK %) der durchschnittlichen spezifischen Wachstumsrate wird aus den täglichen bzw. abschnittsbezogenen Wachstumsraten der jeweiligen Replikate berechnet.
  2. Der Mittelwert aller gemäß dem ersten Gedankenstrich berechneten Werte ist zu berechnen, um den mittleren Variationskoeffizienten der täglichen/abschnittsbezogenen spezifischen Wachstumsrate in Replikatkontrollkulturen zu bestimmen.

ECx: Konzentration der im Prüfmedium aufgelösten Prüfchemikalie, bei der das Wachstum des Testorganismus binnen einer bestimmten Expositionsdauer (die ausdrücklich anzugeben ist, wenn die Expositionsdauer nicht mit der vollständigen oder gewöhnlichen Dauer der Prüfung übereinstimmt) um x % (z.B. 50 %) abnimmt. Um eindeutig anzugeben, ob ein EC-Wert aus der Wachstumsrate (growth rate) oder aus dem Zellertrag (yield) abgeleitet wurde, werden die Kurzbezeichnungen 'ErC' für die Wachstumsrate und 'EyC' für den Zellertrag verwendet.

Nährmedium: gesamtes synthetisches Kulturmedium, in dem die zu prüfenden Algen wachsen, wenn sie der Prüfchemikalie ausgesetzt werden. Die Prüfchemikalie wird im Allgemeinen im Prüfmedium aufgelöst.

Wachstumsrate (durchschnittliche spezifische Wachstumsrate): logarithmische Zunahme der Biomasse während der Expositionsdauer.

Niedrigste Konzentration mit beobachteter Wirkung (LOEC): niedrigste geprüfte Konzentration, bei der beobachtet wurde, dass die Chemikalie binnen einer bestimmten Expositionsdauer gegenüber der Kontrollprobe eine statistisch signifikante Wachstumsreduzierung bewirkt (bei p < 0,05). Sämtliche Testkonzentrationen über der LOEC müssen schädliche Folgen haben, die mindestens den bei der LOEC beobachteten schädlichen Folgen gleichwertig sind. Wenn diese beiden Bedingungen nicht erfüllt werden können, ist umfassend darzulegen, warum die LOEC (und entsprechend die NOEC) gewählt wurde.

Höchste geprüfte Konzentration ohne beobachtete Wirkung (NOEC): Testkonzentration unmittelbar unterhalb der LOEC.

Reaktionsvariable: Variable für die geschätzte Toxizität, abgeleitet aus beliebigen gemessenen Parametern zur Beschreibung der Biomasse durch verschiedene Berechnungsmethoden. Bei dieser Methode sind Wachstumsrate und Zellertrag Reaktionsvariablen, die aus der direkten Messung der Biomasse oder einer Messung eines der genannten Surrogate abgeleitet werden.

Spezifische Wachstumsrate: Reaktionsvariable, die sich aus dem Quotienten der Differenz der natürlichen Logarithmen eines beobachteten Parameters (bei dieser Prüfmethode die Biomasse) und dem betreffenden Zeitraum ergibt.

Prüfchemikalie: ein beliebiger Stoff oder eine Mischung, der bzw. die nach dieser Methode geprüft wird.

Zellertrag: Wert einer Messvariablen am Ende der Expositionsdauer abzüglich des Wertes der Messvariablen zu Beginn der Expositionsdauer als Maß für die Zunahme der Biomasse während der Prüfung. .

Stämme, die sich für den Test als geeignet erwiesen habenAnlage 2

Grünalgen

Pseudokirchneriella subcapitata (früher auch als Selenastrum capricornutum bezeichnet), ATCC 22662, CCAP 278/4, 61.81 SAG

Desmodesmus subspicatus (früher auch als Scenedesmus subspicatus bezeichnet), 86.81 SAG

Kieselalgen

Navicula pelliculosa, UTEX 664

Cyanobakterien

Anabaena flosaquae, UTEX 1444, ATCC 29413, CCAP 1403/13A

Synechococcus leopoliensis, UTEX 625, CCAP 1405/1

Herkunft der Stämme

Die empfohlenen Stämme sind als artenreine Algenkulturen aus folgenden Sammlungen verfügbar (in alphabetischer Reihenfolge):

ATCC: American Type Culture Collection
10801 University Boulevard
Manassas, Virginia 20110-2209
USA
CCAP, Culture Collection of Algae and Protozoa
Institute of Freshwater Ecology,
Windermere Laboratory
Far Sawrey, Amblerside
Cumbria LA22 0LP
VEREINIGTES KÖNIGREICH
SAG: Sammlung Algenkulturen
Pflanzenphysiologisches Institut
Universität Göttingen Nikolausberger Weg 18
37073 Göttingen
DEUTSCHLAND
UTEX Culture Collection of Algae
Section of Molecular, Cellular and Developmental Biology
School of Biological Sciences
the University of Texas at Austin
Austin, Texas 78712
USA

Aussehen und Merkmale der empfohlenen Arten

P. subcapitataD. subspicatusN. pelliculosaA. flosaquaeS. leopoliensis
AussehenGekrümmte und gedrehte einzelne ZellenOval, meist einzelne ZellenStäbchenKetten ovaler ZellenStäbchen
Größe (L × B) µm8-14 × 2-37-15 × 3-127,1 × 3,74,5 × 36 × 1
Zellvolumen (µm3/Zelle)40-60 160-80 140-50 130-40 12,5 2
Zelltrockenmasse (mg/Zelle)2-3 × 10- 83-4 × 10- 83-4 × 10- 81-2 × 10- 82-3 × 10- 9
Wachstumsrate 3 (Tag- 1)1,5-1,71,2-1,51,41,1-1,42,0 - 2,4
1) Gemessen mit einem elektronischen Teilchenzähler.

2) Aus der Größe berechnet.

3) Am häufigsten beobachtete Wachstumsrate im OECD-Medium bei einer Lichtintensität von ca. 70 µE · m- 2 · s- 1 und einer Temperatur von 21 °C.

Spezifische Empfehlungen zur Kultivierung und zur Handhabung der für den Test empfohlenen Arten

Pseudokirchneriella subcapitata und Desmodesmus subspicatus

Diese Grünalgen sind in unterschiedlichen Kulturmedien im Allgemeinen leicht zu kultivieren. Informationen zu geeigneten Medien sind von den Einrichtungen zu beziehen, welche die Sammlungen unterhalten. Die Zellen liegen gewöhnlich als Einzelzellen vor; mit einem elektronischen Teilchenzähler oder unter einem Mikroskop kann die Zelldichte problemlos bestimmt werden.

Anabaena flosaquae

Für Stammkulturen können verschiedene Nährmedien verwendet werden. Insbesondere muss vermieden werden, dass die Batch-Kultur bei der Erneuerung das Stadium des exponentiellen Wachstums überschreitet; ansonsten wäre die Wiederfindung schwierig.

Anabaena flosaquae bildet Ansammlungen verschachtelter Zellketten. Die Größe dieser Ansammlungen kann je nach Kulturbedingungen unterschiedlich sein. Unter Umständen müssen diese Ansammlungen getrennt werden, wenn die Biomasse unter dem Mikroskop bzw. mit einem elektronischen Teilchenzähler bestimmt werden soll.

Zum Trennen der Ketten mit dem Ziel, Schwankungen der Zählergebnisse zu verringern, können Teilproben einer Ultraschallbehandlung unterzogen werden. Eine unnötig lange Ultraschallbehandlung zum Trennen der Ketten in kürzere Stücke kann die Zellen zerstören. Intensität und Dauer der Ultraschallbehandlung müssen bei allen Behandlungen identisch sein.

Mit dem Hämozytometer sind hinreichend Zellen zu zählen (mindestens 400), um auftretende Schwankungen korrigieren zu können und die Zuverlässigkeit der mikroskopischen Dichtebestimmungen zu erhöhen.

Zur Bestimmung des Gesamtvolumens der Anabaena-Zellen nach dem Trennen der Zellketten durch vorsichtige Ultraschallbehandlung kann ein elektronischer Teilchenzähler verwendet werden. Die Ultraschallenergie ist so anzupassen, dass die Zellen nicht beschädigt werden.

Mit einem Wirbelmischer oder durch ein ähnliches geeignetes Verfahren ist sicherzustellen, dass die zur Impfung der Prüfgefäße verwendete Algensuspension gut durchgemischt und homogen beschaffen ist.

Die Prüfgefäße werden auf einen Schütteltisch (mit kreisförmiger oder gerader Schüttelbewegung) gestellt, der mit etwa 150 Umdrehungen pro Minute bewegt wird. Alternativ kann bei Anabaena die Verklumpungstendenz auch durch intermittierendes Schütteln verringert werden. Wenn eine Verklumpung auftritt, ist darauf zu achten, dass repräsentative Proben für Messungen der Biomasse vorliegen. Unter Umständen müssen die Gefäße vor der Probenahme kräftig geschüttelt werden, um die Algenklumpen aufzulösen.

Synechococcus leopoliensis

Für Stammkulturen können verschiedene Nährmedien verwendet werden. Informationen zu geeigneten Medien sind von den Stellen zu beziehen, welche die Sammlungen unterhalten.

Synechococcus leopoliensis wächst in einzelnen stäbchenförmigen Zellen. Die Zellen sind sehr klein; dies erschwert Messungen der Biomasse durch Zählungen unter dem Mikroskop. Elektronische Teilchenzähler, die für die Zählung von Teilchen mit einer Größe von bis zu etwa 1 µm ausgelegt sind, kÆnnen hilfreich sein. Invitro-Fluoreszenzmessungen kommen ebenfalls in Betracht.

Navicula pelliculosa

Für Stammkulturen können verschiedene Nährmedien verwendet werden. Informationen zu geeigneten Medien sind von den Einrichtungen zu beziehen, welche die Sammlungen unterhalten. Das Medium muss Silicat enthalten.

Navicula pelliculosa kann unter bestimmten Wachstumsbedingungen Ansammlungen bilden. Wegen der Bildung von Lipiden neigen die Algenzellen gelegentlich zur Akkumulierung im Oberflächenfilm. In diesem Fall sind besondere Verfahrensweisen erforderlich, wenn repräsentative Unterproben zur Bestimmung der Biomasse genommen werden sollen. Unter Umständen ist ein kräftiges Schütteln z.B. mit einem Wirbelmischer erforderlich.

.

NährmedienAnlage 3

Für die Tests kann eines der beiden folgenden Nährmedien verwendet werden:

Bei der Herstellung dieser Medien sind chemische Stoffe in Reagenzien- oder Analysequalität und entionisiertes Wasser zu verwenden.

Zusammensetzung des AAP-Mediums (US. EPA) und des Mediums gemäß OECD TG 201:

BestandteilEPAOECD
mg/lmMmg/lmM
NaHCO315,00,17950,00,595
NaNO325,50,300
NH4Cl15,00,280
MgCl2 · 6(H2O)12,160,059812,00,0590
CaCl2 · 2(H2O)4,410,030018,00,122
MgSO4 · 7(H2O)14,60,059215,00,0609
K2HPO41,0440,00599
KH2PO41,600,00919
FeCl3 · 6(H2O)0,1600,0005910,06400,000237
Na2EDTA · 2(H2O)0,3000,0008060,1000,000269*
H3BO30,1860,003000,1850,00299
MnCl2 · 4(H2O)0,4150,002010,4150,00210
ZnCl20,003270,0000240,003000,0000220
CoCl2 · 6(H2O)0,001430,0000060,001500,00000630
Na2MoO4 · 2(H2O)0,007260,0000300,007000,0000289
CuCl2 · 2(H2O)0,0000120,000000070,000010,00000006
pH-Wert7,58,1

Das Molverhältnis von EDTA zu Eisen ist geringfügig größer als eins. Daher kann das Eisen nicht ausfällen, und die Chelatbildung von Schwermetallionen wird minimiert.

Im Test mit der Kieselalge Navicula pelliculosa sind beide Medien mit Na2SiO3 · 9H20 aufzufüllen, bis eine Konzentration von 1,4 mg Si/l erreicht ist.

Der pH-Wert des Mediums wird ermittelt, wenn sich das Carbonatsystem des Mediums und der Partialdruck des CO2 in der Umgebungsluft im Gleichgewicht befinden. Die ungefähre Beziehung zwischen dem pH-Wert bei 25 °C und der molaren Bicarbonat-Konzentration lässt sich mit folgender Formel berechnen:

pHeq = 11,30 + log[HCO3]

Bei 15 mg NaHCO3/l, pHeq = 7,5 (U.S. EPA-Medium) und bei 50 mg NaHCO3/l, pHeq = 8,1 (OECD-Medium).

Elementzusammensetzung der Prüfmedien

ElementEPAOECD
mg/lmg/l
C2,1447,148
N4,2023,927
P0,1860,285
k0,4690,459
Na11,04413,704
Ca1,2024,905
Mg2,9092,913
Fe0,0330,017
Mn0,1150,115

Herstellung des OECD-Mediums

NährstoffKonzentration in der Stammlösung
Stammlösung 1:
Makronährstoffe

NH4Cl
MgCl2 · 6H2O
CaCl2 · 2H2O
MgSO4 · 7H2O
KH2PO4


1,5 g/l
1,2 g/l
1,8 g/l
1,5 g/l
0,16 g/l

Stammlösung 2:
Eisen

FeCl3 · 6H2O
Na2EDTA · 2H2O


64 mg/l
100 mg/l

Stammlösung 3:
Spurenelemente

H3BO3
MnCl2 · 4H2O
ZnCl2
CoCl2 · 6H2O
CuCl2 · 2H2O
Na2MoO4 · 2H2O


185 mg/l
415 mg/l
3 mg/l
1,5 mg/l
0,01 mg/l
7 mg/l

Stammlösung 4:
Bicarbonat

NaHCO3
Na2SiO3 · 9H20


50 g/l


Die Stammlösungen sind durch Membranfiltration (mittlerer Porendurchmesser 0,2 µm) oder durch Autoklavieren (120 °C, 15 min) zu sterilisieren. Anschließend werden die Lösungen bei einer Temperatur von 4 °C dunkel gelagert.

Die Stammlösungen 2 und 4 dürfen nicht autoklaviert werden, sondern sind durch Membranfiltration zu sterilisieren.

Zum Herstellen des Nährmediums wird eine geeignete Menge der Stammlösungen 1 bis 4 wie folgt zu Wasser hinzugegeben:

Zu 500 ml sterilisiertem Wasser werden folgende Mengen hinzugegeben:

10 ml Stammlösung 1

1 ml Stammlösung 2

1 ml Stammlösung 3

1 ml Stammlösung 4

Anschließend wird mit sterilisiertem Wasser auf 1.000 ml aufgefüllt.

Danach muss hinreichend Zeit zur Herstellung eines Gleichgewichts zwischen dem Medium und dem CO2-Gehalt der Umgebungsluft gelassen werden; wenn erforderlich, ist das Nährmedium einige Stunden mit steriler gefilterter Luft zu sprudeln.

Herstellung des AAP-Mediums

1. Von den Stammlösungen 2.1 bis 2.7 ist jeweils 1 ml zu etwa 900 ml entionisiertem oder destilliertem Wasser hinzuzugeben; anschließend wird auf 1 Liter aufgefüllt.

2. Stammlösungen mit Makronährstoffen werden hergestellt, indem die folgenden Stoffmengen jeweils zu 500 ml entionisiertem oder destilliertem Wasser hinzugegeben werden. Die Reagenzien 2.1, 2.2, 2.3 und 2.4 können zu einer einzigen Stammlösung kombiniert werden.

2.1NaNO312,750 g
2.2MgCl2·6H2O6,082 g
2.3CaCl2·2H2O2,205 g
2.4Mikronährstoff-Stammlösung (siehe 3)
2.5MgSO4·7H2O7,350 g
2.6K2HPO40,522 g
2.7NaHCO37,500 g
2.8Na2SiO3·9H2OSiehe Hinweis 1

Hinweis 1: Ausschließlich für im Test eingesetzte Kieselalgen-Arten zu verwenden; kann unmittelbar (202,4 mg) hinzugegeben oder mittelbar durch Auffüllen mit einer Stammlösung bis zum Erreichen einer Endkonzentration von 20 mg Si/l im Medium hinzugegeben werden.

3. Die Mikronährstoff-Lösung wird hergestellt, indem folgende Mengen in 500 ml entionisiertem oder destilliertem Wasser aufgelöst werden:

3.1H3BO392,760 mg
3.2MnCl2·4H2O207,690 mg
3.3ZnCl21,635 mg
3.4FeCl3·6H2O79,880 mg
3.5CoCl2·6H2O0,714 mg
3.6Na2MoO4·2H2O3,630 mg
3.7CuCl2·2H2O0,006 mg
3.8Na2EDTA·2H2O150,000 mg. [ Dinatrium(ethylendinitril)tetraacetat]
3.9Na2SeO4·5H2O0,005 mg; siehe Hinweis 2.

Hinweis 2: Darf ausschließlich im Medium für Stammkulturen mit Kieselalgen-Arten verwendet werden.

4. Der pH-Wert ist auf 7,5 ± 0,1 einzustellen (mit 0,1 N oder 1,0 N NaOH oder HCl).

5. Wenn ein Teilchenzähler verwendet werden soll, wird das Medium durch einen 0,22-µm-Membranfilter in ein steriles Gefäß gefiltert; ansonsten erfolgt die Filtration in ein steriles Gefäß durch ein 0,45-µm-Filter.

6. Das Medium ist bis zur Verwendung bei einer Temperatur von etwa 4 °C dunkel zu lagern.

.

Beispiel eines Verfahrens zur Kultivierung der AlgenAnlage 4

Allgemeine Bemerkungen

Durch die Kultivierung nach dem folgenden Verfahren sollen Algenkulturen für Toxizitätstests hergestellt werden.

Um sicherzustellen, dass die Algenkulturen nicht mit Bakterien verunreinigt sind, sind geeignete Methoden anzuwenden. Wenngleich u. U. axenische Kulturen erwünscht sein mögen, sind Algenkulturen doch mit einer einzigen Alge herzustellen und zu verwenden.

Sämtliche Schritte sind unter sterilen Bedingungen auszuführen, um Verunreinigungen mit Bakterien und anderen Algen zu vermeiden.

Ausrüstung und Materialien

Siehe Prüfmethode: Apparatur.

Verfahren zur Herstellung von Algenkulturen

Herstellung von Nährlösungen (Medien)

Alle Nährsalze des Mediums werden als konzentrierte Stammlösungen hergestellt und dunkel und kühl gelagert. Die Lösungen werden durch Filtration oder Autoklavieren sterilisiert.

Das Medium wird durch Zugabe der jeweils erforderlichen Menge der Stammlösung zu sterilem destilliertem Wasser hergestellt; dabei ist darauf zu achten, dass keine Verunreinigungen entstehen können. Bei festen Medien ist 0,8 % Agar hinzuzugeben.

Stammkultur

Die Stammkulturen bestehen aus kleinen Algenkulturen, die regelmäßig in frische Medien übertragen werden und als Ausgangs-Prüfmaterial fungieren. Wenn die Kulturen nicht regelmäßig verwendet werden, sind die Kulturen auf Agarröhrchen (Slopes) abzustreichen. Diese werden anschließend mindestens einmal alle zwei Monate in frische Medien gebracht.

Die Stammkulturen werden in Erlenmeyerkolben mit dem jeweils geeigneten Medium kultiviert (Volumen etwa 100 ml). Wenn die Algen bei 20 °C unter ständiger Beleuchtung inkubiert werden, ist eine wöchentliche Überimpfung erforderlich.

Dabei ist von der ,alten" Kultur mit sterilen Pipetten so viel in einen Kolben mit frischem Medium zu geben, dass bei schnell wachsenden Arten die Ausgangskonzentration etwa 100-mal geringer ist als die Konzentration der alten Kultur.

Die Wachstumsrate einer Art kann anhand der Wachstumskurve bestimmt werden. Wenn diese bekannt ist, kann die Dichte geschätzt werden, bei der die Kultur in das neue Medium gegeben werden sollte. Die Dichteschätzung muss erfolgen, bevor die betreffende Kultur in die Absterbephase gelangt.

Vorkultur

Mit der Vorkultur sollen Algen zur Impfung der Prüfkulturen hergestellt werden. Die Vorkultur wird unter den Prüfbedingungen inkubiert und noch während der Phase des exponentiellen Wachstums verwendet (in der Regel nach einer Inkubationsdauer von 2 bis 4 Tagen). Algenkulturen mit deformierten oder anomalen Zellen sind zu verwerfen.

.

Datenanalyse durch nichtlineare RegressionAnlage 5

Allgemeine Bemerkungen

In den Algentests und in sonstigen Tests zur Ermittlung des mikrobiologischen Wachstums - des Wachstums einer Biomasse - stellt die Reaktion naturgemäß eine kontinuierliche oder metrische Variable dar: eine Prozessrate, wenn von einer Wachstumsrate ausgegangen wird, und ein zeitbezogenes Integral, wenn die Biomasse zugrunde gelegt wird. Diese beide Variablen werden zu der mittleren Wirkung in Beziehung gesetzt, die bei nicht exponierten Replikatkontrollen beobachtet wird, die unter den gegebenen Bedingungen am stärksten reagieren, wobei Licht und Temperatur bei Algentests die wichtigsten Determinanten sind. Das System kann verteilt oder homogen sein, und die Biomasse kann als kontinuierlicher Parameter betrachtet werden; einzelne Zellen brauchen nicht berücksichtigt zu werden. Die Varianzverteilung des Reaktionstyps dieser Systeme hängt ausschließlich von den Versuchsbedingungen ab (die in der Regel durch logarithmischnormale oder normale Fehlerverteilungen gekennzeichnet sind). In dieser Hinsicht besteht ein Unterschied gegenüber typischen Reaktionen in Bioassays mit quantalen Daten, bei denen die Toleranz (typischerweise mit Binomialverteilung) der einzelnen Organismen häufig als maßgebliche Varianzkomponente betrachtet wird. Kontrollreaktionen liegen hier bei null oder im Bereich des Hintergrundwerts.

Im einfachsten Fall nimmt die normalisierte oder relative Reaktion r gleichmäßig von 1 (Hemmung null) bis 0 (vollständige Hemmung) ab. Alle Reaktionen sind mit einem Fehler verbunden, und scheinbare negative Hemmungen können rechnerisch ausschließlich das Ergebnis zufälliger Fehler sein.

Regressionsanalyse

Modelle

Durch eine Regressionsanalyse soll die Konzentrations-Wirkungskurve als mathematische Regressionsfunktion Y = f (C) bzw. häufiger als F (Z) beschrieben werden; dabei ist Z = log C. Umgekehrt ermöglicht C = f- 1 (Y) die Berechnung von ECx-Werten einschließlich EC50, EC10 und EC20 sowie der jeweiligen 95- %-Konfidenzintervalle. Verschiedene einfache mathematische Funktionen haben sich als geeignet zur Beschreibung von Konzentrations- Wirkungsbeziehungen in Tests zur Ermittlung der Hemmung des Algenwachstums erwiesen. Zu diesen Formeln zählen die logistische Gleichung, die nicht symmetrische Weibull-Verteilung und die logarithmische Normalverteilung als sigmoide Kurven, bei denen sich jeweils ein asymptotischer Verlauf gegen 0 bei C → 0 bzw. gegen 1 bei C → unendlich ergibt.

Der Einsatz kontinuierlicher Schwellenwert-Funktionsmodelle (z.B. des Kooijman-Modells der "Hemmung des Populationswachstums" - Kooijman u. a. 1996) wurde kürzlich als Alternative zu asymptotischen Modellen vorgeschlagen. Dieses Modell geht davon aus, dass bei Konzentrationen unter einem bestimmten Schwellenwert EC0+ keine Auswirkungen mehr gegeben sind; dieser Schwellenwert wird mit Hilfe einer einfachen kontinuierlichen Funktion mit undifferenziertem Ausgangspunkt durch Extrapolation der Konzentrations-Wirkungsbeziehung so geschätzt, dass die Konzentrationsachse geschnitten wird.

Die Analyse kann in einer einfachen Minimierung der Restquadratsummen (bei Annahme einer konstanten Varianz) oder der Summe der gewichteten Quadrate (bei Ausgleich einer Varianzheterogenität) bestehen.

Verfahren

Das Verfahren kann wie folgt beschrieben werden: Eine geeignete Funktionsgleichung Y = f (C) wird gewählt und durch nichtlineare Regression an die Daten angepasst. Vorzugsweise sind die Messungen der einzelnen Kolben und nicht die Mittelwerte der Replikate zu verwenden, um möglichst viele Informationen aus den Daten zu gewinnen. Bei einer hohen Varianz haben praktische Erfahrungen hingegen gezeigt, dass die Mittelwerte der Replikate eine sicherere mathematische Schätzung ermöglichen, die weniger von systematischen Fehlern bei den Daten als von den einzelnen ermittelten Datenpunkten abhängt.

Die angepasste Kurve und die gemessenen Daten werden grafisch dargestellt; anschließend ist zu prüfen, ob die Kurve in angemessener Weise angepasst wurde. Eine Analyse der Restwerte könnte für diesen Zweck besonders hilfreich sein. Wenn die gewählte Funktionsbeziehung zur Anpassung der Konzentrations-Wirkungskurve die Kurve nicht vollständig beschreibt oder einen wesentlichen Teil der Kurve wie z.B. die Reaktion bei niedrigen Konzentrationen nicht gut beschreibt, ist eine andere Kurvenanpassung zu wählen (z.B. eine nicht symmetrische Kurve wie etwa die Weibull-Funktion anstelle einer symmetrischen Kurve). Negative Hemmungen können z.B. in Verbindung mit der logarithmischen Normalverteilung problematisch sein und ebenfalls den Einsatz einer alternativen Regressionsfunktion erfordern. Es wird nicht empfohlen, diesen negativen Werten einen Wert von null oder einen kleinen positiven Wert zuzuweisen, weil ansonsten die Fehlerverteilung beeinträchtigt werden könnte. Angemessen sind unter Umständen getrennte Kurvenanpassungen für bestimmte Bereiche der Kurve (z.B. für den Bereich mit der niedrigen Hemmung, wenn EClow x-Werte geschätzt werden sollen). Aus der angepassten Formel sind (mit der Umkehrfunktion C = f- 1(Y)) charakteristische Schätzwerte für ECx zu ermitteln und mindestens für EC50 sowie für einen oder zwei Werte von EClow x zu protokollieren. Praktische Erfahrungen haben gezeigt, dass die Genauigkeit der Algentests im Allgemeinen eine angemessen exakte Schätzung der Konzentration bei einer Hemmung von etwa 10 % ermöglicht, wenn hinreichende Datenpunkte verfügbar sind (sofern nicht eine Unregelmäßigkeit in Form einer Stimulation auch bei niedrigen Konzentrationen gegeben ist). Die Genauigkeit einer EC20-Schätzung ist häufig beträchtlich größer als die Genauigkeit geschätzter EC10-Werte, weil die EC20-Werte gewöhnlich im annähernd linearen Bereich der zentralen Konzentrations-Wirkungskurve vorgenommen werden. Gelegentlich ist die Beurteilung von EC10-Werten wegen der Wachstumsstimulation problematisch. Werte für EC10 sind also im Allgemeinen mit hinreichender Genauigkeit zu erhalten; in jedem Fall empfiehlt sich jedoch, auch die EC20-Werte zu erfassen.

Gewichtungsfaktoren

Die Versuchsvarianz ist nicht grundsätzlich konstant und beinhaltet typischerweise eine proportionale Komponente; daher wird vorzugsweise regelmäßig auch eine gewichtete Regression vorgenommen. Die Gewichtungsfaktoren für diese Analysen werden im Allgemeinen als umgekehrt proportional zur Varianz angenommen:

Wi = 1/Var(ri)

Viele Regressionsprogramme beinhalten die Option zur Durchführung gewichteter Regressionsanalysen mit Gewichtungsfaktoren, die aus einer Tabelle ausgewählt werden können. Die Normalisierung der Gewichtungsfaktoren kann auf bequeme Weise erfolgen, indem die Gewichtungsfaktoren so mit n/Σ wi (n = Anzahl der Datenpunkte) multipliziert werden, dass sich die Summe 1 ergibt.

Normalisierung der Reaktionen

Die Normalisierung durch die mittlere Kontrollreaktion bringt einige grundsätzliche Probleme mit sich und bedingt eine eher komplizierte Varianzstruktur. Mit der Division der Reaktionen durch die mittlere Kontrollreaktion zur Ermittlung der prozentualen Hemmung wird ein weiterer Fehler eingeführt, der auf den in den Mittelwerten der Kontrollen enthaltenen Fehler zurückzuführen ist. Wenn dieser Fehler nicht vernachlässigbar gering ist, sind Gewichtungsfaktoren in Verbindung mit der Regression und mit den Konfidenzintervallen bezogen auf die Kovarianz der Kontrollen zu korrigieren (Draper und Smith, 1981). Eine hohe Genauigkeit der geschätzten Mittelwerte der Kontrollreaktionen ist wichtig, um die Gesamtvarianz der relativen Reaktion zu minimieren. Diese Varianz lässt sich wie folgt beschreiben:

(Dabei steht das tiefgestellte i für die Konzentration i und die tiefgestellte 0 für die Kontrollen.)

Bild

Der Fehler im Mittelwert der Kontrollen ist umgekehrt proportional zur Quadratwurzel der Anzahl der in den Durchschnitt einbezogenen Kontrollreplikate; gelegentlich ist die Einbeziehung historischer Daten gerechtfertigt, um den Fehler auf diese Weise erheblich zu reduzieren. Ein alternatives Verfahren besteht darin, die Daten nicht zu normalisieren und die absoluten Reaktionen einschließlich der Daten der Kontrollreaktionen nicht anzupassen, sondern den Kontroll-Reaktionswert als zusätzlichen Parameter einzuführen, der durch nichtlineare Regression anzupassen ist. In Verbindung mit einer normalen Regressionsgleichung mit zwei Parametern erfordert diese Methode die Anpassung von drei Parametern; daher sind mehr Datenpunkte erforderlich als bei der nichtlinearen Regression von Daten, die mit einer vordefinierten Kontrollreaktion normalisiert werden.

Umkehrung der Konfidenzintervalle

Die Berechnung nichtlinearer Konfidenzintervalle durch Schätzung mit der Umkehrfunktion gestaltet sich eher komplex und ist in den üblichen statistischen Computer-Programmen als reguläre Option nicht enthalten. Ungefähre Konfidenzintervalle können mit Standardprogrammen zur Berechnung nichtlinearer Regressionen durch Neu- Parametrisierung ermittelt werden (Bruce und Versteeg, 1992); dabei wird die mathematische Formel mit den angestrebten Punktschätzungen (z.B. EC10 und EC50) als zu schätzenden Parametern neu entwickelt. Vorausgesetzt wird, dass I = f (α, β, Konzentration); die Definitionsbeziehungen f (α, β, EC10) = 0,1 und f (α, β, EC50) = 0,5 werden verwendet, um f (α, β, Konzentration) durch eine äquivalente Funktion g (EC10, EC50, Konzentration) zu ersetzen.

Für eine direktere Berechnung (Andersen u. a. 1998) kann die ursprüngliche Formel verwendet und eine Taylor- Expansion um die Mittelwerte für ri und r0 angenommen werden.

In letzter Zeit werden zunehmend auch Methoden mit Bootstrapping-Algorithmen verwendet. Diese Methoden beruhen auf Schätzungen einer empirischen Varianzverteilung ausgehend von den gemessenen Daten und von häufigen Stichproben unter Einsatz eines Zufalls-Nummerngenerators.

Literatur

Kooijman, S.A.L.M.; Hanstveit, A.O.; Nyholm, N. (1996): Noeffect concentrations in algal growth inhibition tests. Water Research, 30, 1625-1632.

Draper, N.R., und Smith, H. (1981). Applied Regression Analysis, second edition. Wiley, New York.

Bruce, R..D., und Versteeg" D.J. (1992). A Statistical Procedure for Modelling Continuous Ecotoxicity Data. Environ. Toxicol. Chem.11, 1485-1494.

Andersen, J.S., Holst, H., Spliid, H., Andersen, H., Baun, A., und Nyholm, N. (1998). Continuous ecotoxicological data evaluated relative to a control response. Journal of Agricultural, Biological and Environmental Statistics, 3, 405-420.

UWS Umweltmanagement GmbHweiter .Frame öffnen


...

X