umwelt-online: Verordnung (EG) Nr. 440/2008 zur Festlegung von Prüfmethoden gemäß der VO (EG) Nr. 1907/2006 zur Registrierung, Bewertung, Zulassung und Beschränkung chemischer Stoffe (REACH) (9)

UWS Umweltmanagement GmbHzurück

Frame öffnen

B.8 Prüfung auf subakute Toxizität nach Inhalation - 28-Tage-Test 14 23

Die vollständige Beschreibung dieser Prüfmethode wurde gestrichen.

Die gleichwertige internationale Prüfmethode ist in Teil 0 Tabelle 2 aufgeführt.


Zusammenfassung

Diese überarbeitete Prüfmethode B.8 wurde entwickelt, um die Toxizität der Prüfsubstanz nach wiederholter Exposition durch Inhalation über einen begrenzten Zeitraum (28 Tage) umfassend zu beschreiben und um Daten für die Bewertung des quantitativen Inhalationsrisikos zu gewinnen. Gruppen von mindestens fünf männlichen und fünf weiblichen Nagern werden über einen Zeitraum von 28 Tagen 6 Stunden am Tag a) der Prüfsubstanz in drei oder mehr Konzentrationsstufen, b) gefilterter Luft (negative Kontrolle) und/oder c) dem Vehikel (Vehikelkontrolle) ausgesetzt. Im Allgemeinen werden die Tiere der Prüfsubstanz an fünf Tagen pro Woche ausgesetzt, aber auch sieben Tage pro Woche sind zulässig. Es werden immer männliche und weibliche Tiere geprüft, aber sie können unterschiedlichen Konzentrationsstufen ausgesetzt werden, wenn bekannt ist, dass ein Geschlecht empfindlicher auf eine bestimmte Prüfsubstanz reagiert als das andere. Bei dieser Methode hat der Studienleiter die Möglichkeit, Satellitengruppen (Reversibilitätsprüfung) aufzunehmen sowie eine bronchoalveoläre Lavage (BAL), neurologische Tests, zusätzliche klinische Pathologieuntersuchungen und histopathologische Untersuchungen durchzuführen, um die Toxizität einer Prüfsubstanz besser beschreiben zu können.

Einleitung

1. Diese Prüfmethode entspricht der OECD-Prüfrichtlinie 412 (2009). Die ursprüngliche Prüfrichtlinie 412 (TG 412) zur subakuten Inhalation wurde 1981 angenommen (1). Diese Prüfmethode B.8 (die der überarbeiteten TG 412 entspricht) wurde aktualisiert, um dem neuesten Stand der Wissenschaft Rechnung zu tragen und derzeitige und künftige Regulierungsanforderungen zu erfüllen.

2. Die Methode ermöglicht die Beschreibung der schädlichen Wirkungen nach wiederholter täglicher inhalativer Exposition gegen eine Prüfsubstanz für einen Zeitraum von 28 Tagen. Die in Prüfungen auf subakute Toxizität nach Inhalation über 28 Tage gewonnenen Daten können für quantitative Risikobewertungen verwendet werden [wenn im Anschluss keine Prüfung auf subchronische Toxizität nach Inhalation über 90 Tage erfolgt (Kapitel B.29 dieses Anhangs)]. Die Daten können auch Informationen für die Wahl der Konzentrationen für längerfristige Studien wie die Prüfung auf subchronische Toxizität nach Inhalation über 90 Tage liefern. Diese Prüfmethode ist nicht speziell für die Prüfung von Nanomaterialien bestimmt. Die im Zusammenhang mit dieser Prüfmethode verwendeten Begriffe werden am Ende dieses Kapitels und im Guidance Document 39 (2) definiert.

Ausgangsüberlegungen

3. Um die Qualität der Studie zu verbessern und möglichst wenig Versuchstiere zu verwenden, sollte das Prüflabor vor Durchführung der Studie alle verfügbaren Informationen über die Prüfsubstanz berücksichtigen. Für die Auswahl der am besten geeigneten Prüfkonzentrationen könnten u. a. Informationen wie die Identität, die chemische Struktur und die physikalisch-chemischen Eigenschaften der Prüfsubstanz, Ergebnisse jeglicher In- vitro- oder In-vivo-Toxizitätsprüfungen, vorgesehene Verwendungen und die Möglichkeit der Exposition des Menschen, (Q)SAR-Daten und toxikologische Daten über strukturverwandte Substanzen sowie Daten aus Versuchen zur Prüfung der akuten Toxizität nach Inhalation herangezogen werden. Falls Neurotoxizität erwartet oder im Verlauf der Studie beobachtet wird, kann der Studienleiter beschließen, geeignete Untersuchungen wie eine FOB (functional observational battery) und die Messung der motorischen Aktivität aufzunehmen. Obwohl die Expositionszeit bei bestimmten Untersuchungen ein kritischer Aspekt sein kann, darf die Durchführung dieser zusätzlichen Versuche die Auslegung der Hauptstudie nicht beeinträchtigen.

4. Verdünnungen ätzender oder reizender Prüfsubstanzen können in Konzentrationen geprüft werden, die den gewünschten Toxizitätsgrad erzielen [siehe GD 39 (2)]. Wenn Versuchstiere diesen Stoffen ausgesetzt werden, sollten die Zielkonzentrationen so niedrig sein, dass sie keine starken Schmerzen oder Leiden verursachen; sie sollten aber ausreichen, um die Konzentrations-Wirkungs-Kurve so zu erweitern, dass das regulatorische und wissenschaftliche Ziel der Prüfung erreicht wird. Diese Konzentrationen sollten von Fall zu Fall festgelegt werden, möglichst auf Basis einer entsprechend ausgelegten Dosisfindungsstudie, die Informationen über den kritischen Endpunkt, eine etwaige Reizschwelle und den Zeitpunkt des Einsetzens der Wirkung liefert (siehe Nummern 11, 12 und 13). Die Wahl der Konzentration ist zu begründen.

5. Moribunde Tiere oder Tiere, die Anzeichen starker und andauernder Qualen zeigen, sollten tierschutzgerecht getötet werden. Moribunde Tiere werden auf die gleiche Weise gewertet wie während des Tests gestorbene Tiere. Kriterien für die Entscheidung, moribunde oder schwer leidende Tiere zu töten, sowie Hinweise zur Erkennung des absehbaren oder bevorstehenden Todes sind Gegenstand des OECD Guidance Document on Humane Endpoints (3).

Beschreibung der Methode

Auswahl von Versuchstierarten

6. Es sind junge, gesunde, adulte Nagetiere aus üblicherweise eingesetzten Laborstämmen zu verwenden. Bevorzugtes Versuchstier ist die Ratte. Wird eine andere Tierart eingesetzt, ist dies zu begründen.

Vorbereitung der Tiere

7. Die weiblichen Tiere dürfen weder bereits geworfen haben noch momentan trächtig sein. Am Tag der Randomisierung sollten die jungen, adulten Tiere 7 bis 9 Wochen alt sein; ihr Körpergewicht sollte innerhalb von ± 20 % des mittleren Gewichts für jedes Geschlecht liegen. Die Tiere werden nach Zufallskriterien ausgewählt, zur individuellen Identifizierung markiert und vor Beginn der Prüfung für einen Zeitraum von mindestens fünf Tagen in ihren Käfigen an die Laborbedingungen gewöhnt.

Tierhaltung

8. Um die Beobachtungen zu erleichtern und Verwechslungen auszuschließen, sollten die Tiere möglichst mit einem subkutanen Transponder einzeln gekennzeichnet werden. Die Temperatur in dem Raum, in dem die Versuchstiere gehalten werden, sollte 22 ± 3 °C betragen. Die relative Luftfeuchtigkeit sollte im Idealfall im Bereich zwischen 30 und 70 % liegen; bei Verwendung von Wasser als Vehikel könnte dies jedoch unmöglich sein. Die Tiere sollten vor und nach den Expositionen im Allgemeinen nach Geschlecht und Konzentration in Käfigen gruppiert werden, wobei aber die Anzahl der Tiere pro Käfig noch eine genaue Beobachtung der einzelnen Tiere ermöglichen muss und Verluste aufgrund von Kannibalismus oder Kämpfen minimiert werden sollten. Wenn die Tiere der Prüfsubstanz nur mit der Nase ausgesetzt werden sollen, müssen sie möglicherweise an die Restrainer gewöhnt werden. Die Restrainer sollten die Tiere weder körperlich noch in Bezug auf Wärme oder Fixierung übermäßig beeinträchtigen. Die Fixierung kann physiologische Endpunkte wie Körpertemperatur (Hyperthermie) und/oder das Atemminutenvolumen beeinflussen. Wenn generische Daten zeigen, dass keine derartigen Veränderungen in nennenswertem Ausmaß vorkommen, ist eine Eingewöhnung an die Restrainer nicht erforderlich. Bei der Ganzkörperexposition gegen ein Aerosol sollten die Tiere während der Exposition einzeln untergebracht sein, damit sie die Prüfsubstanz nicht durch das Fell ihrer Käfiggenossen filtriert einatmen. Außer während der Exposition kann herkömmliches und zertifiziertes Labortierfutter bei uneingeschränkter Versorgung mit Trinkwasser verwendet werden. Die Beleuchtung sollte künstlich sein und die Hell- und Dunkelphasen sollten sich im Abstand von 12 Stunden abwechseln.

Inhalationskammern

9. Bei der Auswahl einer Inhalationskammer sind die Art der Prüfsubstanz und der Gegenstand der Prüfung zu berücksichtigen. Das bevorzugte Verfahren ist die 'Nose-only'-Exposition (dieser Begriff umfasst 'nur Kopf', 'nur Nase' oder 'nur Schnauze'). Für die Untersuchung von Flüssigkeits- oder Feststoffaerosolen und für Dämpfe, die zu Aerosolen kondensieren können, wird im Allgemeinen die 'Nose-only'-Exposition bevorzugt. Besondere Ziele der Untersuchung können möglicherweise mit einer Ganzkörperexposition besser erreicht werden, doch dies sollte im Prüfbericht begründet werden. Um bei Verwendung einer Ganzkörperkammer die Stabilität der Atmosphäre sicherzustellen, sollte das 'Gesamtvolumen' der Versuchstiere 5 % des Volumens der Kammer nicht übersteigen. Die Grundzüge der 'Nose-only'- und der Ganzkörperexposition sowie ihre jeweiligen Vor- und Nachteile sind in GD 39 (2) beschrieben.

Toxizitätsstudien

Grenzkonzentrationen

10. Anders als bei Studien zur akuten Toxizität gibt es bei Prüfungen auf subakute Toxizität nach Inhalation über 28 Tage keine festgelegten Grenzkonzentrationen. Bei der Festlegung der maximalen Prüfkonzentration ist Folgendes zu beachten: 1) die höchste erreichbare Konzentration, 2) das maximale Expositionsniveau von Menschen ('worst case), 3) die Notwendigkeit, eine ausreichende Sauerstoffversorgung aufrechtzuerhalten, und/oder 4) Tierschutzerwägungen. Gibt es keine auf Daten basierenden Grenzwerte, können die akuten Grenzwerte der Verordnung (EG) Nr. 1272/2008 (13) zugrunde gelegt werden (d. h. bis zu einer Höchstkonzentration von 5 mg/l bei Aerosolen, 20 mg/l bei Dämpfen und 20.000 ppm bei Gasen); siehe GD 39 (2). Wenn diese Grenzen bei der Prüfung von Gasen oder hochflüchtigen Prüfsubstanzen (z.B. Kältemitteln) überschritten werden müssen, ist dies zu begründen. Die Grenzkonzentration muss eine eindeutige Toxizität hervorrufen, ohne den Tieren übermäßigen Stress zu bereiten oder ihre Lebensdauer zu beeinträchtigen (3).

Dosisfindungsstudie

11. Vor Beginn der Hauptstudie muss möglicherweise eine Dosisfindungsstudie durchgeführt werden. Diese ist umfassender als eine Vorstudie, weil sie nicht auf die Wahl der Konzentration begrenzt ist. Die in einer Dosisfindungsstudie gewonnenen Erkenntnisse können zu einer erfolgreichen Hauptstudie führen. Sie kann z.B. technische Informationen zu den Analysemethoden, zur Partikelgröße, zur Erkennung toxischer Mechanismen, klinische Pathologiedaten und histopathologische Daten sowie Schätzungen möglicher NOAEL- und MTC-Konzentrationen in einer Hauptstudie liefern. Der Studienleiter kann entscheiden, mithilfe der Dosisfindungsstudie die Schwelle für die Reizung der Atemwege (z.B. durch histopathologische Untersuchung der Atemwege, Lungenfunktionsprüfung oder bronchoalveoläre Lavage), die höchste Konzentration, die von den Tieren ohne übermäßigen Stress toleriert wird, und die Parameter, die die Toxizität der Prüfsubstanz am besten beschreiben, zu identifizieren.

12. Eine Dosisfindungsstudie kann eine oder mehrere Konzentrationsstufen umfassen. Auf jeder Konzentrationsstufe sollten höchstens drei männliche und drei weibliche Tiere der Prüfsubstanz ausgesetzt werden. Eine Dosisfindungsstudie sollte mindestens fünf Tage und im Allgemeinen nicht mehr als 14 Tage dauern. Die Wahl der Konzentrationen für die Hauptstudie ist im Prüfbericht zu begründen. Ziel der Hauptstudie ist es, nachzuweisen, dass eine Beziehung zwischen der Konzentration und der Wirkung besteht, die am voraussichtlich empfindlichsten Endpunkt auftritt. Die niedrigste Konzentration sollte im Idealfall eine Konzentration sein, bei der keine zu beobachtenden schädlichen Wirkungen auftreten, und die höchste Konzentration sollte eine eindeutige Toxizität hervorrufen, ohne den Tieren übermäßigen Stress zu bereiten oder ihre Lebensdauer zu beeinträchtigen (3).

13. Bei der Auswahl der Konzentrationsstufen für die Dosisfindungsstudie sollten alle verfügbaren Informationen berücksichtigt werden, einschließlich der Struktur-Wirkungs-Beziehungen und der Daten über ähnliche Stoffe (siehe Nummer 3). Eine Dosisfindungsstudie kann bestätigen/widerlegen, welche Endpunkte nach mechanistischen Kriterien als die empfindlichsten Endpunkte angesehen werden, z.B. die Cholinesterasehemmung durch Organophosphate, die Methämoglobinbildung durch für Erythrozyten toxische Stoffe, Schilddrüsenhormone (T3, T4) im Fall von thyrotoxischen Stoffen, Proteine, LDH oder Neutrophile in bronchoalveolärer Lavage im Fall schwach löslicher unschädlicher Partikel oder lungenreizender Aerosole.

Hauptstudie

14. Die Hauptstudie zur Prüfung auf subakute Toxizität umfasst im Allgemeinen drei Konzentrationsstufen sowie, falls erforderlich, eine gleichzeitige negative (Luft-)Kontrolle und/oder eine Vehikelkontrolle (siehe Nummer 17). Die Festlegung der geeigneten Expositionsstufen sollte sich auf alle verfügbaren Daten stützen, einschließlich der Ergebnisse systemischer Toxizitätsprüfungen, des Metabolismus und der Kinetik (hohe Konzentrationsstufen, die kinetische Prozesse sättigen, sind zu vermeiden). Jede Prüfgruppe umfasst mindestens zehn Nagetiere (fünf Männchen und fünf Weibchen), die der Prüfsubstanz für einen Zeitraum von 4 Wochen an fünf Tagen in der Woche jeweils 6 Stunden pro Tag ausgesetzt werden (Gesamtdauer der Prüfung 28 Tage). Die Tiere können auch an sieben Tagen in der Woche exponiert werden (z.B. wenn inhalierte Arzneimittel geprüft werden). Ist bekannt, dass ein Geschlecht empfindlicher auf eine bestimmte Prüfsubstanz reagiert, können die Geschlechter unterschiedlichen Konzentrationsstufen ausgesetzt werden, um die Konzentrations-Wirkungs-Beziehung genauer zu bestimmen (siehe Nummer 15). Wenn für eine 'Nose-only'-Exposition andere Nagetierarten als Ratten verwendet werden, kann die maximale Expositionsdauer angepasst werden, um artenspezifisches Leiden zu minimieren. Eine Expositionsdauer von weniger als 6 Stunden/Tag oder die Notwendigkeit einer Ganzkörperexpositionsstudie mit Langzeitexposition (z.B. 22 Stunden/Tag) ist zu begründen [siehe GD 39 (2)]. Während der Exposition sollte kein Futter verabreicht werden, es sei denn die Exposition dauert länger als 6 Stunden. Wasser kann während einer Ganzkörperexposition jederzeit angeboten werden.

15. Die gewählten Zielkonzentrationen sollen es ermöglichen, die Zielorgane zu identifizieren und eine deutliche Konzentrations-Wirkungs-Beziehung zu belegen:

  • Die hohe Konzentrationsstufe sollte toxische Wirkungen hervorrufen, aber keine anhaltenden Symptome oder Todesfälle verursachen, die eine Auswertung der Ergebnisse beeinträchtigen würden.
  • Der Abstand zwischen den mittleren Konzentrationsstufen muss eine Abstufung der toxischen Wirkungen zwischen der niedrigen und der hohen Konzentration ermöglichen.
  • Die untere Konzentrationsstufe sollte praktisch keine Toxizitätszeichen hervorrufen.

Satellitenstudie (Reversibilität)

16. Es kann eine Satellitenstudie durchgeführt werden, um die Tiere für einen angemessenen Zeitraum nach der Behandlung (mindestens 14 Tage) auf Reversibilität, Persistenz oder ein verzögertes Auftreten von Toxizität zu beobachten. Satellitengruppen bestehen aus fünf männlichen und fünf weiblichen Tieren, die der Prüfsubstanz gleichzeitig mit den Versuchstieren der Hauptstudie ausgesetzt werden. Dabei sollten sie der Prüfsubstanz auf der höchsten Konzentrationsstufe ausgesetzt werden; erforderlichenfalls sollte es auch gleichzeitige Luft- und/oder Vehikelkontrollen geben (siehe Nummer 17).

Kontrolltiere

17. Eine gleichzeitige negative (Luft-)Kontrollgruppe ist genauso zu behandeln wie die Prüfgruppe, außer dass die Tiere nicht der Prüfsubstanz, sondern gefilterter Luft ausgesetzt werden. Wenn die Prüfatmosphäre mithilfe von Wasser oder einem anderen Stoff erzeugt wird, ist statt der negativen (Luft-)Kontrollgruppe eine Vehikelkontrollgruppe zu verwenden. Wenn möglich sollte Wasser als Vehikel benutzt werden. In diesem Fall sind die Tiere Luft mit derselben relativen Luftfeuchtigkeit auszusetzen wie die exponierten Gruppen. Das geeignete Vehikel ist auf der Grundlage einer geeigneten Vorstudie oder von historischen Daten auszuwählen. Ist die Toxizität eines Vehikels unklar, kann der Studienleiter beschließen, sowohl eine negative (Luft-)Kontrolle als auch eine Vehikelkontrolle zu verwenden; hiervon wird jedoch dringend abgeraten. Wenn historische Daten belegen, dass ein Vehikel nicht toxisch ist, besteht keine Notwendigkeit für eine negative (Luft-)Kontrollgruppe und es sollte nur eine Vehikelgruppe verwendet werden. Ergibt eine Vorstudie einer in einem Vehikel formulierten Prüfsubstanz, dass keine Toxizität vorliegt, ist das Vehikel folglich in der geprüften Konzentration nicht toxisch, und diese Vehikelkontrolle sollte verwendet werden.

Expositionsbedingungen

Verabreichung der Konzentrationen

18. Die Tiere werden der Prüfsubstanz in Form von Gas, Dampf, Aerosol oder einer Kombination dieser Formen ausgesetzt. Der zu prüfende Aggregatzustand hängt von den physikalisch-chemischen Eigenschaften der Prüfsubstanz, der gewählten Konzentration und/oder der physikalischen Form ab, in der die Prüfsubstanz bei der Handhabung und Verwendung am wahrscheinlichsten vorliegt. Hygroskopische und chemisch reaktive Prüfsubstanzen sollten bei geringer Luftfeuchtigkeit geprüft werden. Dabei ist darauf zu achten, dass keine explosionsfähigen Konzentrationen erzeugt werden. Bei Partikeln kann die Partikelgröße durch mechanische Prozesse verringert werden. GD 39 (2) enthält nähere Hinweise.

Partikelgrößenverteilung

19. Bei allen Aerosolen und bei Dämpfen, die zu Aerosolen kondensieren können, sollte die Partikelgröße bestimmt werden. Damit alle relevanten Regionen der Atemwege der Prüfsubstanz ausgesetzt werden, werden mittlere aerodynamische Massendurchmesser (Mass Median Aerodynamic Diameter - MMAD) von 1 bis 3 μm mit einer geometrischen Standardabweichung (σg) von 1,5 bis 3,0 empfohlen (4). Wenngleich nach Möglichkeit versucht werden sollte, diese Werte zu erreichen, ist Fachwissen erforderlich, falls sie nicht erzielt werden können. Metalldampfpartikel können z.B. unter diesen Werten liegen, geladene Partikel und Fasern dagegen können diese Werte überschreiten.

Vorbereitung der Prüfsubstanz in einem Vehikel

20. Im Idealfall sollte die Prüfsubstanz ohne ein Vehikel geprüft werden. Wenn für die Erzeugung einer geeigneten Prüfsubstanzkonzentration oder Partikelgröße ein Vehikel verwendet werden muss, ist Wasser zu bevorzugen. Wird eine Prüfsubstanz in einem Vehikel gelöst, so ist seine Stabilität nachzuweisen.

Überwachung der Expositionsbedingungen

Luftstrom in der Inhalationskammer

21. Der Luftstrom durch die Kammer sollte während jeder Exposition sorgfältig geregelt, kontinuierlich überwacht und mindestens stündlich protokolliert werden. Die Echtzeit-Überwachung der Konzentration (oder zeitliche Stabilität) der Prüfatmosphäre ist eine integrale Messung aller dynamischen Parameter und gibt indirekt die Möglichkeit, alle relevanten dynamischen Inhalationsparameter zu messen. Wenn die Konzentration in Echtzeit überwacht wird, kann die Frequenz der Messung der Luftströme auf eine einzige Messung je Exposition und Tag reduziert werden. Es sollte besonders darauf geachtet werden, das erneute Einatmen in 'Nose-only'-Expositionskammern zu vermeiden. Die Sauerstoffkonzentration sollte mindestens 19 % betragen, und die Kohlendioxidkonzentration sollte 1 % nicht überschreiten. Gibt es Grund zu der Annahme, dass diese Werte nicht eingehalten werden können, sind die Sauerstoff- und Kohlendioxidkonzentrationen zu messen. Wenn die Messungen am ersten Expositionstag die richtigen Werte dieser Gase bestätigen, sollten keine weiteren Messungen erforderlich sein.

Temperatur und relative Luftfeuchtigkeit in der Inhalationskammer

22. Die Temperatur in der Inhalationskammer sollte 22 ± 3 °C betragen. Sowohl bei der 'Nose-only'- als auch bei der Ganzkörperexposition sollte die relative Luftfeuchtigkeit im Atembereich der Tiere kontinuierlich überwacht und während jeder Exposition möglichst stündlich dokumentiert werden. Die relative Luftfeuchtigkeit sollte möglichst zwischen 30 und 70 % liegen, was jedoch möglicherweise nicht erreichbar ist (z.B. bei der Prüfung von wasserbasierten Mischungen) oder wegen chemischer Interferenz mit der Prüfmethode nicht gemessen werden kann.

Prüfsubstanz: nominale Konzentration

23. Die nominale Konzentration in der Expositionskammer sollte möglichst berechnet und protokolliert werden. Die nominale Konzentration ist die Masse der erzeugten Prüfsubstanz dividiert durch das Gesamtvolumen der durch die Inhalationskammer geleiteten Luft. Sie wird nicht zur Beschreibung der Exposition der Tiere verwendet; vielmehr gibt ein Vergleich der nominalen Konzentration und der tatsächlichen Konzentration Aufschluss über die Effizienz des Prüfsystems bei der Erzeugung der Prüfkonzentration und kann daher für die Aufdeckung von Problemen bei dieser Erzeugung verwendet werden.

Prüfsubstanz: tatsächliche Konzentration

24. Die tatsächliche Konzentration ist die Konzentration der Prüfsubstanz im Atembereich der Tiere in einer Inhalationskammer. Die tatsächlichen Konzentrationen können entweder durch spezifische Methoden (z.B. direkte Probenahme, adsorptive Methoden oder chemische Reaktionsverfahren mit anschließender analytischer Charakterisierung) oder durch unspezifische Methoden wie Gravimetrie bestimmt werden. Die gravimetrische Methode ist lediglich für Aerosole mit nur einem Bestandteil in Pulverform oder Aerosole von Flüssigkeiten mit geringer Flüchtigkeit akzeptabel und sollte sich auf geeignete, vor der Studie zu erstellende und für die Prüfsubstanz spezifische Beschreibungen stützen. Die Konzentration von Aerosolen mit mehreren Bestandteilen in Pulverform kann ebenfalls gravimetrisch bestimmt werden. Hierzu muss jedoch mit Analysedaten belegt werden, dass die Schwebstoffe eine ähnliche Zusammensetzung haben wie das Ausgangsmaterial. Liegen diese Angaben nicht vor, muss die Prüfsubstanz (im Idealfall im Schwebezustand) möglicherweise im Verlauf der Studie in regelmäßigen Abständen neu analysiert werden. Bei aerosolisierten Agenzien, die verdunsten oder sublimieren können, sollte gezeigt werden, dass alle Phasen von der gewählten Methode erfasst wurden.

25. Für die gesamte Dauer der Studie sollte möglichst eine Partie der Prüfsubstanz verwendet werden; die Probe sollte unter Bedingungen aufbewahrt werden, die ihre Reinheit, Homogenität und Stabilität gewährleisten. Die Prüfsubstanz sollte vor Beginn der Studie mit Angaben zur Reinheit und, falls technisch machbar, zur Identität sowie zu den Mengen identifizierter Schadstoffe und Verunreinigungen beschrieben werden. Hierzu können unter anderem die folgenden Daten verwendet werden: Retentionszeit und relative Peakfläche, durch Massenspektrometrie oder Gaschromatographie bestimmtes Molekulargewicht oder andere Werte. Das Prüflabor ist zwar nicht für die Identität der Probe verantwortlich, doch es kann ratsam sein, dass es die Beschreibung des Auftraggebers zumindest in gewissen Grenzen (z.B. Farbe, physikalische Beschaffenheit usw.) überprüft.

26. Die Expositionsatmosphäre ist so konstant wie möglich zu halten. Um die Stabilität der Expositionsbedingungen nachzuweisen, kann ein Echtzeitüberwachungsgerät verwendet werden, z.B. ein Aerosol-Photometer für Aerosole oder ein Gesamtkohlenwasserstoff-Analysator (THC) für Dämpfe. Die tatsächliche Konzentration in der Kammer sollte an jedem Expositionstag für jede Expositionsstufe mindestens dreimal gemessen werden. Falls dies wegen geringer Luftdurchflussraten oder niedriger Konzentrationen nicht möglich ist, reicht eine Probe je Expositionsperiode. Im Idealfall sollte diese Probe dann über die gesamte Expositionszeit gewonnen werden. Die einzelnen Proben der Konzentration in der Kammer sollten bei Gasen und Dämpfen nicht mehr als ± 10 % und bei Flüssig- oder Feststoffaerosolen nicht mehr als ± 20 % von der mittleren Kammerkonzentration abweichen. Die Zeit bis zum Erreichen eines Gleichgewichts in der Kammer (t95) ist zu berechnen und zu dokumentieren. Die Expositionsdauer erstreckt sich über den Zeitraum, in dem die Prüfsubstanz erzeugt wird. Dies schließt die Zeiten zur Erreichung des Gleichgewichts in der Kammer (t95) und zum Abbau der Konzentrationen ein. GD 39 (2) enthält Hinweise zur Einschätzung von t95.

27. Bei sehr komplexen Mischungen aus Gasen/Dämpfen und Aerosolen (z.B. Verbrennungsatmosphären und Prüfsubstanzen, die aus hierzu bestimmten Endverbraucherprodukten/-geräten gesprüht werden) kann sich jede Phase in einer Inhalationskammer anders verhalten. Daher sollte mindestens eine Indikatorsubstanz (Analyt), normalerweise der wichtigste Wirkstoff in der Mischung, von jeder Phase (Gas/Dampf und Aerosol) ausgewählt werden. Wenn die Prüfsubstanz eine Mischung ist, sollte die Analysekonzentration für die gesamte Mischung und nicht nur für den Wirkstoff oder die Indikatorsubstanz (Analyt) dokumentiert werden. Weitere Informationen zu tatsächlichen Konzentrationen sind in GD 39 (2) zu finden.

Prüfsubstanz: Partikelgrößenverteilung

28. Die Partikelgrößenverteilung von Aerosolen sollte auf jeder Konzentrationsstufe mindestens wöchentlich mit einem Kaskaden-Impaktor oder einem anderen Messgerät wie einem APS bestimmt werden. Kann nachgewiesen werden, dass die mit einem Kaskaden-Impaktor und dem alternativen Messgerät erzielten Ergebnisse gleichwertig sind, so kann das alternative Instrument während der gesamten Studie verwendet werden.

29. Parallel zum Hauptinstrument ist ein zweites Gerät wie ein Gravimetriefilter oder eine Gaswaschflasche zu verwenden, um den Abscheidegrad des Hauptinstruments zu bestätigen. Die durch die Partikelgrößenanalyse bestimmte Massenkonzentration sollte innerhalb vertretbarer Grenzen um die durch die Filteranalyse bestimmte Massenkonzentration liegen [siehe GD 39 (2)]. Wenn die Gleichwertigkeit bei allen geprüften Konzentrationen zu Beginn der Studie nachgewiesen werden kann, kann auf weitere bestätigende Messungen verzichtet werden. Aus Tierschutzgründen sollten Vorkehrungen getroffen werden, um unklare Daten zu minimieren, die dazu führen könnten, dass eine Studie wiederholt werden muss.

30. Wenn die Möglichkeit besteht, dass Dampfkondensation zur Bildung eines Aerosols führen kann, oder wenn in einer Dampfatmosphäre mit dem Potenzial für gemischte Phasen Partikel nachgewiesen werden, sollte eine Partikelgrößenbestimmung für Dämpfe vorgenommen werden.

Beobachtungen

31. Die Tiere sollten vor, während und nach der Exposition auf klinische Zeichen beobachtet werden. Je nach Reaktion der Tiere während der Exposition können häufigere Beobachtungen angezeigt sein. Wenn die Beobachtung der Tiere durch die Verwendung von Restrainern, wegen schlecht beleuchteter Ganzkörperkammern oder getrübter Atmosphäre erschwert ist, sind die Tiere nach der Exposition sorgfältig zu beobachten. Durch Beobachtungen vor der Exposition am folgenden Tag kann beurteilt werden, ob toxische Wirkungen sich zurückgebildet oder verschlimmert haben.

32. Sämtliche Beobachtungen werden in Einzelprotokollen dokumentiert, die für jedes Tier geführt werden. Wenn Tiere aus humanen Gründen getötet werden oder ihr Tod festgestellt wird, sollte der Todeszeitpunkt so genau wie möglich registriert werden.

33. Die Beobachtungen der Tiere sollten sich insbesondere auf Veränderungen an Haut, Fell, Augen, Schleimhäuten, des Atmungs- und Kreislaufsystems, des Nervensystems sowie auf Somatomotorik und Verhaltensmuster erstrecken. Besonderes Augenmerk ist auf Tremor, Konvulsionen, Salivation, Diarrhö, Lethargie, Schlaf und Koma zu richten. Die Messung der Rektaltemperatur kann zusätzliche Belege für mit der Behandlung oder Unterbringung zusammenhängende Reflex-Bradypnoe oder Hypo-/Hyperthermie liefern. Darüber hinaus können zusätzliche Aspekte wie Kinetik, Biomonitoring, Lungenfunktion, Retention schlecht löslicher Stoffe, die im Lungengewebe akkumulieren, und Verhaltensstörungen in das Studienprotokoll aufgenommen werden.

Körpergewicht

34. Das Körpergewicht der einzelnen Tiere sollte kurz vor der ersten Exposition (Tag 0), danach zweimal wöchentlich (z.B. freitags und montags, um die Erholung während eines expositionsfreien Wochenendes nachzuweisen, oder in einem Zeitintervall, das die Beurteilung der systemischen Toxizität ermöglicht) und zum Zeitpunkt des Todes oder der Tötung dokumentiert werden. Treten in den ersten zwei Wochen keine Wirkungen auf, kann das Körpergewicht während der restlichen Studiendauer wöchentlich gemessen werden. Satellitentiere (Reversibilitätsprüfung) (falls verwendet) sollten während der gesamten Erholungsphase weiterhin wöchentlich gewogen werden. Am Ende der Studie sollten alle Tiere kurz vor der Tötung gewogen werden, um eine objektive Berechnung der Organ-Körpergewicht-Verhältnisse zu ermöglichen.

Futter- und Wasseraufnahme

35. Die Futteraufnahme sollte wöchentlich gemessen werden. Auch die Wasseraufnahme kann gemessen werden.

Klinische Pathologie

36. An allen Tieren, auch an Kontroll- und Satellitentieren (Reversibilitätprüfung), sollten klinische Pathologieuntersuchungen durchgeführt werden, wenn sie getötet werden. Der Zeitraum zwischen dem Ende der Exposition und der Blutentnahme ist zu protokollieren, insbesondere wenn der betreffende Endpunkt rasch zu seinem ursprünglichen Wert zurückkehrt. Für Parameter mit einer kurzen Plasmahalbwertszeit (z.B. COHb, CHE und MetHb) ist die Probenahme nach Ende der Exposition angezeigt.

37. In Tabelle 1 sind die im Allgemeinen für alle Toxikologiestudien erforderlichen klinischen Pathologieparameter aufgeführt. In der Regel ist eine Urinanalyse nicht notwendig, kann aber durchgeführt werden, wenn sie wegen erwarteter oder festgestellter Toxizität für nützlich gehalten wird. Der Studienleiter kann beschließen, zusätzliche Parameter zu bestimmen, um die Toxizität einer Prüfsubstanz genauer zu beschreiben (z.B. Cholinesterase, Lipide, Hormone, Säure-Basen-Gleichgewicht, Methämoglobin oder Heinz-Körper, Creatin-Kinase, Verhältnis von myeloiden zu erythroiden Zellen, Troponin, arterielle Blutgase, Lactatdehydrogenase, Sorbitdehydrogenase, Glutamatdehydrogenase und γ-Glutamyltranspeptidase).

Tabelle 1: Klinische Standardpathologieparameter

Hämatologische Untersuchung
Erythrozytenzahl

Hämatokrit

Hämoglobinkonzentration

Mittleres korpuskuläres Hämoglobin

Mittleres Erythrozyteneinzelvolumen

Mittlere korpuskuläre Hämoglobinkonzentration

Retikulozyten

Gesamtleukozytenzahl

Differentialleukozytenzahl

Thrombozytenzahl

Gerinnungsfähigkeit (einen Wert wählen):

  • Prothrombinzeit
  • Blutgerinnungszeit
  • Partielle Thromboplastinzeit
Klinische Chemie
Glucose *

Gesamtcholesterin

Triglyceride

Harnstoff-N

Gesamtbilirubin

Kreatinin

Gesamtprotein

Albumin

Globulin

Alanin-Aminotransferase

Aspartat-Aminotransferase

Alkalische Phosphatase

Kalium

Natrium

Calcium

Phosphor

Chlorid

Urinuntersuchung (fakultativ)
Aussehen (Farbe und Trübung)

Menge

Spezifisches Gewicht oder Osmolarität

pH-Wert

Gesamtprotein

Glucose

Blut/Blutzellen

*) Da ein längerer Futterentzug die Glucosemessungen bei den behandelten gegenüber den Kontrolltieren verzerren kann, sollte der Studienleiter entscheiden, ob eine Futterkarenz angezeigt ist. Die Dauer des Futterentzugs muss auf die verwendete Art abgestimmt sein; bei der Ratte kann sie 16 Stunden betragen (nächtliche Futterkarenz). Der Nüchternglucosewert kann nach nächtlicher Futterkarenz in der letzten Expositionswoche oder nach nächtlicher Futterkarenz vor der Nekropsie (in letzterem Fall zusammen mit allen anderen klinischen Pathologieparametern) bestimmt werden.

38. Gibt es Anhaltspunkte dafür, dass die unteren Atemwege (d. h. die Alveolen) die Hauptablagerungs- und Retentionsorte sind, kann die bronchoalveoläre Lavage (BAL) die Methode der Wahl sein, um hypothesenbasierte Dosis-Wirkungs-Parameter quantitativ zu analysieren, wobei Alveolitis, Lungenentzündung und Phospholipidose im Vordergrund stehen. Auf diese Weise können Veränderungen der Dosis-Wirkungs-Beziehung und des zeitlichen Verlaufs alveolärer Läsionen angemessen untersucht werden. Die BAL-Flüssigkeit kann auf Gesamt- und Differenzialleukozytenzahl, Gesamtprotein und Laktatdehydrogenase analysiert werden. In Betracht gezogen werden können auch Parameter, die auf lysosomale Schäden, Phospholipidose, Fibrose und reizende oder allergische Entzündung hindeuten; dazu kann auch die Bestimmung entzündungsfördernder Zytokine/Chemokine gehören. BAL-Messungen dienen im Allgemeinen zur Ergänzung der Ergebnisse histopathologischer Untersuchungen, können sie aber nicht ersetzen. Eine Anleitung zur Durchführung der Lungenlavage ist in GD 39 (2) enthalten.

Makroskopische Pathologie und Organgewichte

39. Alle Versuchstiere, einschließlich der Tiere, die während der Prüfung sterben oder aus Tierschutzgründen getötet und aus der Studie genommen werden, sind (falls möglich) vollständig zu entbluten und auf makroskopische Veränderungen zu untersuchen. Der Zeitabstand zwischen dem Ende der letzten Exposition eines Tiers und seiner Tötung ist zu dokumentieren. Kann die Nekropsie nicht unmittelbar nach Auffinden eines toten Tieres erfolgen, sollte der Körper auf eine Temperatur gekühlt (nicht eingefroren) werden, die tief genug ist, um die Autolyse zu minimieren. Die Nekropsie ist baldmöglichst, in der Regel innerhalb von einem oder zwei Tagen durchzuführen. Alle makroskopischen Veränderungen sollten für jedes Tier protokolliert werden, wobei besonders auf Veränderungen der Atemwege zu achten ist.

40. In Tabelle 2 sind die Organe und Gewebe aufgeführt, die bei der Nekropsie zur histopathologischen Untersuchung in einem geeigneten Medium aufbewahrt werden sollten. Die Aufbewahrung der in [Klammern] gesetzten Organe und Gewebe sowie aller sonstigen Organe und Gewebe liegt im Ermessen den Studienleiters. Die durch Fettdruck hervorgehobenen Organe sind so bald wie möglich nach der Sektion von anhaftendem Gewebe zu befreien und feucht zu wiegen, um ein Austrocknen zu verhindern. Die Schilddrüse und die Nebenhoden sind nur zu wiegen, wenn dies notwendig ist, da ihre Befreiung von anhaftendem Gewebe die histopathologische Bewertung erschweren kann. Gewebe und Organe sind unmittelbar nach der Nekropsie und je nach verwendetem Fixierungsmittel mindestens 24-48 Stunden vor der Befreiung von anhaftendem Gewebe in 10 %ig gepuffertem Formalin oder einem anderen geeigneten Fixierungsmittel zu fixieren.

Tabelle 2: Bei der Nekropsie aufbewahrte Organe und Gewebe

Nebennieren

Knochenmark (und/oder frisches Aspirat)

Gehirn (mit Schnitten von Cerebrum, Cerebellum und Medulla/Pons)

[Augen (Netzhaut, Sehnerv) und Lider]

Herz

Nieren

Larynx (3 Ebenen, 1 Ebene, die die Basis der Epiglottis enthält)

Leber

Lunge (alle Lungenlappen auf einer Ebene, einschließlich der Hauptbronchien)

Lymphknoten aus der Hilusregion der Lunge, insbesondere bei schlecht löslichen Prüfsubstanzen, die in Partikelform vorliegen. Für gründlichere Untersuchungen und/oder Studien mit immunologischem Schwerpunkt können zusätzliche Lymphknoten in Betracht gezogen werden, z.B. aus der mediastinalen, der cervicalen/submandibulären und/oder der aurikularen Region.

Nasopharyngeale Gewebe (mindestens 4 Ebenen; 1 Ebene muss den Nasen-Rachen-Gang und das Lymphgewebe des Nasen-Rachen-Raums (NALT) umfassen.

Speiseröhre

[Riechkolben]

Ovarien

Samenbläschen

Rückenmark (zervical, mittlerer Thoraxbereich und lumbar)

Milz

Magen

Hoden

Thymus

Schilddrüse

Trachea (mindestens 2 Ebenen mit einem Längsschnitt durch die Carina und 1 Querschnitt)

[Harnblase]

Uterus

Alle makroskopischen Veränderungen

41. Die Lungen sind in intaktem Zustand zu entfernen, zu wiegen und mit einem geeigneten Fixierungsmittel bei einem Druck von 20-30 cm Wasser zu behandeln, damit die Lungenstruktur erhalten bleibt (5). Die Schnitte werden bei allen Lungenlappen auf einer Ebene einschließlich der Hauptbronchien hergestellt; wenn eine Lungenlavage durchgeführt wird, ist der nicht gewaschene Lappen jedoch auf drei Ebenen zu schneiden (keine seriellen Schnitte).

42. Mindestens vier Ebenen der nasopharyngealen Gewebe sind zu untersuchen; eine der Ebenen sollte den Nasen- Rachen-Gang umfassen (5, 6, 7, 8, 9), damit das Plattenepithel, das (nicht Zilientragende respiratorische) Übergangsepithel, das (Zilientragende respiratorische) Flimmerepithel und das Riechepithel sowie das Lymphgewebe (NALT; 10,11) gründlich untersucht werden können. Drei Ebenen des Larynx sind zu untersuchen; eine dieser Ebenen sollte die Basis der Epiglottis enthalten (12). Mindestens zwei Ebenen der Trachea sind zu untersuchen, darunter ein Längsschnitt durch die Carina der Bifurkation der extrapulmonalen Bronchien und ein Querschnitt.

Histopathologie

43. Die in Tabelle 2 aufgeführten Organe und Gewebe der Tiere in der Kontrollgruppe und der Gruppe mit der höchsten Konzentration und aller während der Studie gestorbenen oder getöteten Tiere sollten histopathologisch untersucht werden. Besonderes Augenmerk ist auf Atemwege, Zielorgane und makroskopische Veränderungen zu richten. Die Organe und Gewebe, die in der höchsten Konzentrationsgruppe makroskopische Veränderungen aufweisen, sollten in allen Gruppen untersucht werden. Der Studienleiter kann beschließen, histopathologische Untersuchungen bei zusätzlichen Gruppen durchzuführen, um eine eindeutige Konzentrationswirkung nachzuweisen. Umfasst eine Prüfung auch eine Satellitengruppe (Reversibilitätsprüfung), sind alle Gewebe und Organe histopathologisch zu untersuchen, bei denen in den Behandlungsgruppen Wirkungen aufgetreten sind. Treten in der Gruppe mit der höchsten Konzentration übermäßig viele frühzeitige Todesfälle oder andere Probleme auf, die die Signifikanz der Daten beeinträchtigen, so ist die Gruppe mit der nächstniedrigeren Konzentration histopathologisch zu untersuchen. Man sollte versuchen, die makroskopischen Befunde mit den Ergebnissen der mikroskopischen Untersuchung zu korrelieren.

Daten und Berichterstattung

Daten

44. Körpergewichte, Futteraufnahme, Ergebnisse der klinischen Pathologie, makroskopische Befunde, Organgewichte und Ergebnisse der Histopathologie sind für die einzelnen Tiere anzugeben. Die Daten der klinischen Beobachtung sind in tabellarischer Form zusammenzufassen. Daraus müssen für jede Prüfgruppe die Anzahl der verwendeten Tiere, die Anzahl der Tiere mit spezifischen Toxizitätszeichen, die Anzahl der Tiere, die während der Prüfung tot aufgefunden oder vorzeitig getötet wurden, der Todeszeitpunkt der einzelnen Tiere, eine Beschreibung und der zeitliche Verlauf der toxischen Wirkungen und deren Reversibilität sowie die Sektionsbefunde ersichtlich sein. Sowohl die quantitativen als auch die gelegentlich erzielten Ergebnisse sind anhand eines geeigneten statistischen Verfahrens zu bewerten. Hierzu ist eine allgemein anerkannte Statistikmethode heranzuziehen; die Statistikmethoden sind bei der Auslegung der Studie festzulegen.

Prüfbericht

45. Der Prüfbericht sollte, soweit zutreffend, die folgenden Informationen enthalten:

Versuchstiere und Tierhaltung

  • Beschreibung der Haltungsbedingungen mit Angaben zu Anzahl (oder Veränderung der Anzahl) der Tiere je Käfig, Einstreu, Umgebungstemperatur und relativer Luftfeuchtigkeit, Photoperiode und Futter,
  • Art/Stamm und Begründung für die Verwendung einer anderen Art als der Ratte; Daten zur Herkunft der Tiere und historische Daten können angegeben werden, wenn sie von Tieren mit ähnlichen Expositions-, Unterbringungs- und Futterkarenzbedingungen stammen,
  • Anzahl, Alter und Geschlecht der Tiere,
  • Randomisierungsmethode,
  • Beschreibung etwaiger Vorbereitung vor der Prüfung, einschließlich Ernährung, Quarantäne und Behandlung von Krankheiten.

Prüfsubstanz

  • physikalische Beschaffenheit, Reinheit und, wenn maßgeblich, physikalisch-chemische Eigenschaften (einschließlich Isomerisierung),
  • Angaben zur Identifikation und CAS-Nummer (Chemical Abstract Services), falls bekannt.

Vehikel

  • Begründung für die Verwendung eines Vehikels sowie für die Wahl des Vehikels (falls nicht Wasser),
  • historische oder parallel erzeugte Daten, die belegen, dass das Vehikel keinen Einfluss auf das Ergebnis der Studie hat.

Inhalationskammer

  • ausführliche Beschreibung der Inhalationskammer mit Angabe des Volumens sowie ein Diagramm,
  • Herkunft und Beschreibung der für die Exposition der Tiere sowie für die Erzeugung der Atmosphäre verwendeten Ausrüstung,
  • Ausrüstung für die Messung von Temperatur, Luftfeuchtigkeit, Partikelgröße und tatsächlicher Konzentration,
  • Herkunft der Luft und Klimatisierungssystem,
  • für die Kalibrierung der Ausrüstung verwendete Methoden, um eine homogene Prüfatmosphäre sicherzustellen,
  • Druckunterschied (positiv oder negativ),
  • Expositions-Öffnungen je Kammer ('Nose-only'-Exposition); Anordnung der Tiere in der Kammer (Ganzkörperexposition),
  • Stabilität der Prüfatmosphäre,
  • Lage von Temperatur- und Feuchtigkeitssensoren und Ort der Probenahme der Prüfatmosphäre in der Kammer,
  • Behandlung der zugeführten/entzogenen Luft,
  • Luftdurchflussraten, Luftdurchflussrate/Expositions-Öffnung ('Nose-only'-Exposition) oder Anzahl der Tiere je Kammer (Ganzkörperexposition),
  • Zeit bis zum Erreichen des Gleichgewichts in der Inhalationskammer (t95),
  • Zahl der Volumenänderungen pro Stunde,
  • Messgeräte (falls zutreffend).

Expositionsdaten

  • Begründung für die Wahl der Zielkonzentration in der Hauptstudie,
  • nominale Konzentrationen (Gesamtmasse der in die Inhalationskammer eingeleiteten Prüfsubstanz dividiert durch das Volumen der durch die Kammer geleiteten Luft),
  • im Atembereich der Tiere ermittelte tatsächliche Konzentrationen der Prüfsubstanz; bei Gemischen mit heterogenen physikalischen Formen (Gase, Dämpfe, Aerosole) kann jede Form getrennt analysiert werden,
  • alle Luftkonzentrationen sollten in Masseneinheiten (z.B. mg/l, mg/m3 usw.) und nicht in Volumeneinheiten (z.B. ppm, ppb usw.) angegeben werden,
  • Partikelgrößenverteilung, mittlerer aerodynamischer Massendurchmesser (MMAD) und geometrische Standardabweichung (ag), einschließlich der Berechnungsmethoden. Einzelne Partikelgrößenanalysen sind zu protokollieren.

Prüfbedingungen

  • Angaben zur Vorbereitung der Prüfsubstanz, einschließlich Angaben zu den Verfahren zur Reduzierung der Partikelgröße von Feststoffen oder zur Herstellung von Lösungen der Prüfsubstanz,
  • eine Beschreibung (möglichst mit Diagramm) der Ausrüstung, die zur Erzeugung der Prüfatmosphäre und zur Exposition der Tiere gegen die Prüfatmosphäre verwendet wird,
  • Angaben zur Ausrüstung, die für die Überwachung von Temperatur, Luftfeuchtigkeit und Luftstrom in der Kammer verwendet wird (Erstellung einer Kalibrationskurve),
  • Angaben zur Ausrüstung, mit der die Proben zur Bestimmung der Konzentration in der Kammer und der Partikelgrößenverteilung genommen werden,
  • Angaben zur verwendeten chemischen Analysemethode und zur Validierung der Methode (einschließlich der Effizienz der Wiederfindung der Prüfsubstanz im Medium),
  • Randomisierungsmethode für die Einteilung der Tiere in Prüf- und Kontrollgruppen,
  • Angaben über Futter- und Wasserqualität (einschließlich Art/Herkunft des Futters, Wasserquelle),
  • Begründung für die Wahl der Prüfkonzentrationen.

Ergebnisse

  • tabellarische Darstellung von Temperatur, Luftfeuchtigkeit und Luftstrom in der Kammer,
  • tabellarische Darstellung von Daten zur nominalen und tatsächlichen Konzentration in der Kammer,
  • tabellarische Darstellung der Partikelgrößendaten einschließlich Daten zur analytischen Probenahme, Partikelgrößenverteilung und Berechnung des MMAD und der σg,
  • tabellarische Darstellung der erhobenen Daten und der Konzentration für jedes einzelne Tier (d. h. Tiere, die Anzeichen für Toxizität zeigen, einschließlich Mortalität sowie Art, Schweregrad, Zeitpunkt des Einsetzens und Dauer der Wirkungen),
  • tabellarische Darstellung des Körpergewichts der einzelnen Tiere,
  • tabellarische Darstellung der Futteraufnahme,
  • tabellarische Darstellung der klinischen Pathologieparameter,
  • Sektionsbefunde und histopathologische Ergebnisse für jedes einzelne Tier, falls vorhanden,
  • tabellarische Darstellung aller anderen gemessenen Parameter.

Diskussion und Auswertung der Ergebnisse

  • Besondere Aufmerksamkeit sollte der Beschreibung der Methoden gelten, die verwendet wurden, um die Kriterien dieser Prüfmethode zu erfüllen, z.B. die Grenzkonzentration oder die Partikelgröße.
  • Die Lungengängigkeit von Partikeln vor dem Hintergrund der Gesamtbefunde sollte behandelt werden, insbesondere, wenn die Partikelgrößenkriterien nicht erfüllt werden konnten.
  • Die Kohärenz der Methoden zur Bestimmung der nominalen und der tatsächlichen Konzentration sowie die Beziehung der tatsächlichen Konzentration zur nominalen Konzentration sind in die Gesamtbewertung der Studie aufzunehmen.
  • Die wahrscheinliche Todesursache und die vorherrschende Wirkungsweise (systemisch oder lokal) sollten behandelt werden.
  • Falls Tiere, die unter Schmerzen litten oder Zeichen für schweres und anhaltendes Leiden aufwiesen, auf humane Weise getötet werden mussten, ist eine Erklärung auf der Grundlage der Kriterien im OECD Guidance Document on Humane Endpoints (3) zu geben.
  • Die Zielorgane sollten identifiziert werden.
  • Der NOAEL und der LOAEL sollten bestimmt werden.

Literatur:

1. OECD (1981). Subchronic Inhalation Toxicity Testing, Original Test Guideline No 412, Environment Directorate, OECD, Paris.

2. OECD (2009). Guidance Document on Acute Inhalation Toxicity Testing, Environmental Health and Safety Monograph Series on Testing and Assessment No. 39, ENV/JM/MONO(2009)28, OECD, Paris.

3. OECD (2000). Guidance Document on the Recognition, Assessment and Use of Clinical Signs as Humane Endpoints for Experimental Animals Used in Safety Evaluation, Environmental Health and Safety Monograph Series on Testing and Assessment No. 19, ENV/JM/MONO(2000)7, OECD, Paris.

4. Whalan JE and Redden JC (1994). Interim Policy for Particle Size and Limit Concentration Issues in Inhalation Toxicity Studies. Office of Pesticide Programs, United States Environmental Protection Agency.

5. Dungworth DL, Tyler WS, Plopper CE (1985). Morphological Methods for Gross and Microscopic Pathology (Chapter 9) in Toxicology of Inhaled Material, Witschi, H.P. and Brain, J.D. (eds), Springer Verlag Heidelberg, pp. 229-258.

6. Young JT (1981). Histopathological examination of the rat nasal cavity. Fundam. Appl. Toxicol. 1: 309-312.

7. Harkema JR (1990). Comparative pathology of the nasal mucosa in laboratory animals exposed to inhaled irritants. Environ. Health Perspect. 85: 231-238.

8. Woutersen RA, Garderen-Hoetmer A, van Slootweg PJ, Feron VJ (1994). Upper respiratory tract carcinogenesis in experimental animals and in humans. In: Waalkes MP and Ward JM (eds) Carcinogenesis. Target Organ Toxicology Series, Raven Press, New York, 215-263.

9. Mery S, Gross EA, Joyner DR, Godo M, Morgan KT (1994). Nasal diagrams: A tool for recording the distribution of nasal lesions in rats and mice. Toxicol. Pathol. 22: 353-372.

10. Kuper CF, Koornstra PJ, Hameleers DMH, Biewenga J, Spit BJ, Duijvestijn AM, Breda Vriesman van PJC, Sminia T (1992). The role of nasopharyngeal lymphoid tissue. Immunol. Today 13: 219-224.

11. Kuper CF, Arts JHE, Feron VJ (2003). Toxicity to nasal-associated lymphoid tissue. Toxicol. Lett. 140-141: 281- 285.

12. Lewis DJ (1981). Mitotic Indices of Rat Laryngeal Epithelia. Journal of Anatomy 132(3): 419-428.

13. Verordnung (EG) Nr. 1272/2008 des Europäischen Parlaments und des Rates vom 16. Dezember 2008 über die Einstufung, Kennzeichnung und Verpackung von Stoffen und Gemischen, zur Änderung und Aufhebung der Richtlinien 67/548/EWG und 1999/45/EG und zur Änderung der Verordnung (EG) Nr. 1907/2006 (ABl. Nr. L 353 vom 31.12.2008 S. 1).

.

DefinitionAnlage 1


Prüfsubstanz: jeder Stoff oder jedes Gemisch, der/das mit dieser Prüfmethode getestet wird.

B.9 Toxizität nach 28-tägiger Gabe (dermal)

1. Methode

1.1 Einleitung

Siehe allgemeine Einleitung zu Teil B (Punkt A).

1.2 Definitionen

Siehe allgemeine Einleitung zu Teil B (Punkt B)

1.3 Bezugssubstanzen

Keine.

1.4 Prinzip der Methode

Die Prüfsubstanz wird täglich in abgestuften Dosen mehreren Versuchstiergruppen auf die Haut aufgetragen, und zwar eine Dosierung je Gruppe über einen Zeitraum von 28 Tagen. Während des Versuchszeitraums werden die Tiere täglich beobachtet, um Symptome toxischer Wirkungen festzustellen. Tiere, die während des Versuchs sterben, sowie bei Versuchsende überlebende Tiere werden seziert.

1.5 Qualitätskriterien

Keine.

1.6 Beschreibung der Methode

1.6.1 Vorbereitung

Die Tiere werden vor Versuchsbeginn für einen Zeitraum von mindestens 5 Tagen unter experimentellen Haltungs- oder Fütterungsbedingungen eingewöhnt. Vor dem Versuch werden gesunde junge Tiere randomisiert und den einzelnen Behandlungs- und Kontrollgruppen zugeordnet. Kurz vor Versuchsbeginn wird das Fell auf dem Rücken der Versuchstiere geschoren. Ein Abrasieren des Fells ist ebenfalls möglich, sollte jedoch 24 Stunden vor dem Versuch erfolgen. Das Scheren oder Rasieren muss normalerweise wöchentlich wiederholt werden. Es ist darauf zu achten, dass dabei die Haut nicht verletzt wird. Mindestens 10 % der Körperoberfläche wird für die Applikation vorbereitet. Bei der Bestimmung des zu scherenden Bereichs und der Applikationsfläche ist das Gewicht der Tiere zu berücksichtigen. Werden feste Stoffe verwendet, die gegebenenfalls pulverisiert werden können, sollte die Prüfsubstanz ausreichend mit Wasser oder ggf. in anderer geeigneter Form angefeuchtet werden, um einen guten Kontakt mit der Haut sicherzustellen. Flüssige Prüfsubstanzen werden im Allgemeinen unverdünnt angewendet. Die Applikation erfolgt täglich an 5 bis 7 Tagen pro Woche.

1.6.2 Versuchsbedingungen

1.6.2.1 Versuchstiere

Es können geschlechtsreife Ratten oder Kaninchen verwendet werden. Auch andere Tierarten können verwendet werden, jedoch muss ihre Verwendung begründet werden.

Die Schwankung des Körpergewichts der Tiere des jeweiligen Versuchs sollte bei Versuchsbeginn nicht mehr als ± 20 % vom entsprechenden Mittelwert betragen.

1.6.2.2 Anzahl und Geschlecht

Mindestens 10 Tiere (5 weibliche und 5 männliche) mit gesunder unbeschädigter Haut sind für jede Dosierung zu verwenden. Die weiblichen Tiere dürfen weder geworfen haben noch trächtig sein. Sollen im Verlauf des Versuchs Tiere getötet werden, so muss die Gesamtzahl der Tiere um die Zahl an Tieren erhöht werden, die schon vor Versuchsende getötet werden sollen. Darüber hinaus kann eine zusätzliche Gruppe (Satellitengruppe) von 10 Tieren (5 Tiere pro Geschlecht) über 28 Tage mit der höchsten Dosierung behandelt werden. Während der darauf folgenden behandlungsfreien 14 Tage wird auf Reversibilität, Fortbestehen oder verzögertes Auftreten toxischer Wirkungen geachtet. Eine Satellitengruppe von 10 Kontrolltieren (5 Tiere pro Geschlecht) wird ebenfalls verwendet.

1.6.2.3 Dosierungen

Es sind mindestens drei Dosierungen sowie eine Kontrollgruppe oder - sofern ein Vehikel benutzt wurde - eine Vehikel-Kontrollgruppe zu wählen. Die Einwirkungszeit sollte mindestens 6 Stunden pro Tag betragen. Die Applikation der Prüfsubstanz sollte täglich zur gleichen Zeit erfolgen. Eine Anpassung der Dosierung an das Körpergewicht ist in festgesetzten Intervallen (wöchentlich oder zweimal wöchentlich) vorzunehmen, um in Relation zum Körpergewicht des Tieres ein konstantes Dosierungsniveau zu erhalten. Abgesehen von der Applikation der Prüfsubstanz sind die Tiere der Kontrollgruppe genauso zu behandeln wie die Versuchstiere. Wird zur Erleichterung der Applikation ein Vehikel benutzt, so wird der Kontrollgruppe das Vehikel in gleicher Weise verabreicht wie den behandelten Tieren, und zwar in der Menge, die die Gruppe mit der höchsten Dosierung erhält. Die höchste Dosierung sollte so gewählt werden, dass auf jeden Fall toxische Effekte auftreten, die Tiere jedoch nicht oder nur in geringer Zahl sterben. Die niedrigste Dosierung sollte keine Anzeichen von Toxizität hervorrufen. Liegen brauchbare Schätzungen über die Höhe der Exposition beim Menschen vor, so sollte die niedrigste Dosis diesen Wert überschreiten. Nach Möglichkeit sollte die mittlere Dosierung nur geringe toxische Effekte verursachen. Werden mehrere Zwischendosierungen verabreicht, so sollten sie so gewählt werden, dass es zu einer graduellen Abstufung der toxischen Wirkungen kommt. In den Gruppen mit niedriger oder mittlerer Dosierung sowie in den Kontrollgruppen sollte die Anzahl der Todesfälle gering sein, um eine aussagekräftige Bewertung der Ergebnisse zu ermöglichen.

Führt die Applikation der Prüfsubstanz zu schweren Hautreizungen, sollte die Konzentration herabgesetzt werden, was bei hoher Dosierung zu einer Verminderung oder einem Ausbleiben sonstiger toxischer Wirkungen führen könnte. Wurde überdies die Haut stark beschädigt, ist es u. U. notwendig, den Versuch abzubrechen und mit einer geringeren Konzentration erneut durchzuführen.

1.6.2.4 Limit-Test

Verursacht bei Durchführung einer Vorstudie die Verabreichung einer Dosis von 1.000 mg/kg bzw. einer höheren Dosis, die einer möglichen Exposition beim Menschen entspricht, keine toxischen Auswirkungen, so ist eine weitere Prüfung nicht erforderlich.

1.6.2.5 Beobachtungszeitraum

Alle Tiere sind täglich auf Symptome toxischer Wirkungen zu beobachten. Der Eintritt des Todes und der Zeitpunkt, zu dem Symptome auftreten und/oder wieder abklingen, sind festzuhalten.

1.6.3 Versuchsdurchführung

Die Tiere sollten einzeln in Käfigen gehalten werden. Sie erhalten die Prüfsubstanz vorzugsweise an 7 Tagen pro Woche über einen Zeitraum von 28 Tagen. Die Tiere einer Satellitengruppe, die für eine Nachbeobachtung vorgesehen sind, sollten für weitere 14 Tage ohne Behandlung gehalten werden, um die Reversibilität bzw. das Fortbestehen toxischer Wirkungen zu beobachten. Die Expositionszeit beträgt mindestens 6 Stunden pro Tag.

Die Prüfsubstanz ist einheitlich auf einen Bereich, der etwa 10 % der Körperoberfläche entspricht, aufzutragen. Bei hochtoxischen Substanzen kann die behandelte Oberfläche kleiner sein, es sollte jedoch ein möglichst großer Bereich mit einer möglichst dünnen und einheitlichen Schicht exponiert werden.

Die Prüfsubstanz ist während der Expositionszeit mit einem porösen Mullverband und einem hautschonenden Pflaster in Kontakt mit der Haut zu halten. Die Versuchsfläche ist außerdem auf eine geeignete Art abzudecken, um den Mullverband und die Prüfsubstanz zu fixieren und sicherzustellen, dass die Tiere die Prüfsubstanz nicht oral aufnehmen können. Es können auch Mittel zur Einschränkung der Bewegungsfreiheit angewendet werden, eine vollständige Immobilisierung ist jedoch nicht zu empfehlen. Als Alternative kann eine "Halsmanschette" verwendet werden.

Nach Ablauf der Expositionszeit entfernt man - soweit möglich - den Rest der Prüfsubstanz, und zwar unter Verwendung von Wasser oder eines anderen geeigneten Hautreinigungsverfahrens.

Alle Tiere sollen täglich beobachtet und Zeichen toxischer Wirkungen, darunter der Zeitpunkt des Auftretens sowie Grad und Dauer, aufgezeichnet werden. Die Beobachtungen sollten sich insbesondere auf Veränderung an Haut, Fell, Augen und Schleimhäuten, Atmung, Kreislauf, autonomem und zentralem Nervensystem sowie an der Somatomotorik und am Verhaltensmuster erstrecken. Die Futteraufnahme und das Gewicht der Tiere werden wöchentlich bestimmt. Eine regelmäßige Beobachtung der Tiere ist erforderlich, um so weit wie möglich sicherzustellen, dass Tiere während des Versuchs nicht durch Kannibalismus, Autolyse der Gewebe oder Fehler beim Umsetzen verloren gehen. Nach Abschluss des Versuchszeitraums werden alle überlebenden Tiere mit Ausnahme der Satellitengruppe seziert. Sterbende Tiere sowie Tiere, bei denen Anzeichen von starkem Leiden und Schmerzen, festgestellt werden, sollten daraufhin sofort ausgesondert und unter Verwendung einer tierschutzgerechten Methode getötet und seziert werden.

Am Ende des Versuchs werden alle Tiere, einschließlich der Kontrolltiere, folgenden Untersuchungen unterzogen:

  1. Die Hämatologie sollte mindestens die Bestimmung des Hämatokritwerts und Hämoglobinkonzentrat der Erythrozytenzahl, der Gesamt- und Differenzial-Leukozytenzahl sowie die Messung der Gerinnungsfähigkeit umfassen;
  2. klinischbiochemische Analyse des Blutes: Zur Beurteilung der Leber- und Nierenfunktion sollte zumindest je einer der folgenden Parameter bestimmt werden: Alanin-Aminotransferase (früher bekannt als Serum-Glutamat-Pyruvat-Transaminase), Aspartat-Aminotransferase (früher bekannt als Serum-Glutamat-Oxalazetat-Transaminase), Harnstoff-Stickstoff, Albumin, Kreatinin, Gesamt-Bilirubin und Gesamt-Serum-Protein.

Bestimmungen weiterer blutchemischer Parameter, die ggf. für eine adäquate toxikologische Bewertung erforderlich sind, umfassen: Kalzium, Phosphor, Chlorid, Natrium, Kalium, Nüchternglukose, Lipide, Hormone, Säuren-Basen-Gleichgewicht, Methämoglobin, Cholinesteraseaktivität.

Zusätzliche klinischbiochemische Analysen können ggf. notwendig sein, um die Untersuchung der beobachteten Effekte zu vertiefen.

1.6.4 Autopsie

An allen am Versuch beteiligten Tieren wird eine vollständige Autopsie vorgenommen. Zumindest die Leber, die Nieren, die Nebennieren und die Hoden werden so bald wie möglich nach der Sektion feucht gewogen, um ein Austrocknen zu verhindern. Organe und Gewebe, d. h. unbehandelte und behandelte Haut, Leber, Nieren, Milz, Hoden, Nebennieren, Herz und Zielorgane (Organe mit makroskopischen Veränderungen und Größenveränderungen) sind in einem geeigneten Medium für mögliche spätere histopathologische Untersuchungen aufzubewahren.

1.6.5 Histopathologische Untersuchungen

Bei allen Tieren der Gruppe mit der höchsten Dosierung sowie bei den Tieren der Kontrollgruppe ist eine histologische Untersuchung der konservierten Organe und Gewebe durchzuführen. Alle Organe und Gewebe, die in der Gruppe mit der höchsten Dosierung prüfsubstanzbedingte Schädigungen aufweisen, müssen auch bei allen anderen Gruppen bei geringerer Dosierung untersucht werden. Bei den Tieren der Satellitengruppe sind jene Organe und Gewebe mit besonderer Aufmerksamkeit zu untersuchen, bei denen in den anders behandelten Gruppen Vergiftungssymptome auftraten.

2. Daten

Die Daten sind in tabellarischer Form zusammenzufassen. Daraus müssen für jede Dosisgruppe und Kontrollgruppe die Anzahl der Tiere zu Beginn des Versuchs und die Anzahl der Tiere mit den einzelnen Schädigungsformen zu entnehmen sein.

Alle ermittelten Ergebnisse sind durch ein geeignetes statistisches Verfahren zu bewerten. Dazu kann jede anerkannte statistische Methode herangezogen werden.

3. Abschlussbericht

3.1 Prüfbericht

Im Prüfbericht ist, wenn möglich, Folgendes anzugeben:

3.2 Bewertung und Interpretation

Siehe allgemeine Einleitung zu Teil B (Punkt D).

4. Literatur

Siehe allgemeine Einleitung zu Teil B (Punkt E).

B.10 In-vitro-Test auf Chromosomenaberrationen in Säugetierzellen 17

Einleitung

Diese Prüfmethode entspricht der OECD-Prüfrichtlinie 473 (2016). Sie ist Teil einer Reihe von Prüfmethoden zur genetischen Toxikologie. Ein neu erstelltes OECD-Dokument enthält kurz gefasste und hilfreiche Informationen zu Untersuchungen zur genetischen Toxikologie sowie eine Übersicht über die jüngsten Änderungen dieser Prüfrichtlinien (1).

Der In-vitro-Test auf Chromosomenaberrationen dient dem Nachweis von Chemikalien, die in Säugerzellkulturen strukturelle Chromosomenaberrationen auslösen (2) (3) (4). Dabei ist zwischen strukturellen Chromosomentyp- und Chromatidentypaberrationen zu unterscheiden. Bei In-vitro-Tests auf Chromosomenaberrationen könnte es zu Polyploidie (einschließlich Endoreduplikation) kommen. Aneugene können zwar eine Polyploidie hervorrufen, die an sich jedoch kein Hinweis auf ein aneugenisches Potenzial ist und möglicherweise nur auf Störungen des Zellzyklus oder Zytotoxizität hinweist (5). Dieser Test dient nicht der Messung der Aneuploidie; dazu wird ein In-vitro-Mikrokerntest (6) empfohlen.

Für den In-vitro-Chromosomenaberrationstest eignen sich Kulturen von etablierten Zelllinien oder primäre Zellkulturen vom Menschen oder von Nagetieren. Die verwendeten Zellen werden unter dem Gesichtspunkt ihrer Wachstumsfähigkeit in Kultur, der Karyotypstabilität (einschließlich Chromosomenzahl) und der spontanen Häufigkeit von Chromosomenaberrationen ausgewählt (7). Die bisher vorhandenen Daten lassen zwar keine verbindlichen Empfehlungen zu, legen jedoch nahe, dass bei der Bewertung des Gefahrenpotenzials chemischer Stoffe der p53-Status, die genetische (Karyotyp-) Stabilität, die DNA-Reparaturfähigkeit und die Herkunft (Nagetier/Mensch) der für die Tests ausgewählten Zellen berücksichtigt werden müssen. Anwendern dieser Prüfmethode wird daher empfohlen, beim Nachweis der Entwicklung von Chromosomenaberrationen den Einfluss dieser und anderer Zellcharakteristika auf die Leistungsfähigkeit von Zelllinien zu berücksichtigen, da sich die wissenschaftlichen Kenntnisse auf diesem Gebiet ständig weiterentwickeln.

Für Definitionen siehe Anlage 1.

Ausgangsüberlegungen und Grenzen

In vitro durchgeführte Versuche setzen in der Regel eine exogene Metabolisierung voraus, es sei denn, die Zellen sind in Bezug auf die Prüfchemikalie metabolisch kompetent. Mit exogener Metabolisierung lassen sich die In-vivo-Bedingungen jedoch nicht gänzlich nachvollziehen. Es sind unbedingt Bedingungen zu vermeiden, die zu künstlich herbeigeführten Positivergebnissen führen könnten, d. h. zu Chromosomenschäden, die nicht von einer direkten Interaktion zwischen den Prüfchemikalien und den Chromosomen herrühren; zu solchen Bedingungen gehören Veränderungen des pH-Wertes bzw. der Osmolalität (8) (9) (10), eine Interaktion mit einzelnen Komponenten des Mediums (11) (12) oder eine hochgradige Zytotoxizität (13) (14) (15) (16).

Dieser Test dient der Feststellung von Chromosomenaberrationen infolge klastogener Vorgänge. Zur Analyse von Chromosomenaberrationen sollten Metaphasenzellen verwendet werden. Deshalb ist es wichtig, dass Zellen sowohl in behandelten als auch in unbehandelten Kulturen die Mitose erreichen. Für hergestellte Nanomaterialien sind möglicherweise spezielle Anpassungen dieser Prüfmethode erforderlich, die an dieser Stelle jedoch nicht beschrieben werden.

Bevor die Prüfmethode auf ein Gemisch angewendet wird, um Daten für regulatorische Zwecke zu generieren, sollte geprüft werden, ob, und, falls ja, warum sie diesbezüglich zweckdienliche Ergebnisse liefert. Diese Überlegungen erübrigen sich, wenn die Durchführung von Tests für das Gemisch gesetzlich vorgeschrieben ist.

Testprinzip

Die Behandlung der Zellkulturen (humane Zellen oder andere Säugetierzellen) mit der Prüfchemikalie erfolgt mit und ohne exogene Metabolisierung, es sei denn, es werden Zellen verwendet, die über eine entsprechende Stoffwechselkompetenz verfügen (siehe Nummer 13). In bestimmten vorab festgelegten Zeitabständen werden die Zellkulturen mit einem Spindelgift (z.B. Colcemid oder Colchicin) behandelt, geerntet und angefärbt und die Metaphasezellen anschließend mikroskopisch auf Chromatidentyp- und Chromosomentypaberrationen untersucht.

Beschreibung der Methode

Vorbereitungen

Zellen

Es können verschiedene Zelllinien (z.B. Ovarialzellen des chinesischen Hamsters (CHO), V79-Lungenzellen des chinesischen Hamsters (CHL), TK6-Lungenzellen des chinesischen Hamsters (CHL)/IU) oder primäre Zellkulturen, auch menschliche Zellen oder Lymphozyten aus dem peripheren Blut von Menschen oder anderen Säugern, verwendet werden (7). Die Wahl der verwendeten Zelllinien sollte wissenschaftlich begründet sein. Wenn Primärzellen verwendet werden, sollten im Interesse des Tierschutzes Primärzellen menschlichen Ursprungs in Betracht gezogen werden, soweit dies möglich ist und die Entnahme nach humanethischen Grundsätzen und Regeln erfolgt. Lymphozyten aus peripherem Humanblut sollte jungen (etwa 18-35 Jahre alten) Personen entnommen werden, die Nichtraucher sind, bei denen keine Krankheit festgestellt wird und die kürzlich nicht in einem Umfang mit gentoxischen Substanzen (z.B. Chemikalien, ionisierende Strahlungen) in Berührung kamen, der die Hintergrundinzidenz von Chromosomenaberrationen erhöhen würde. Auf diese Weise wird sichergestellt, dass die Hintergrundinzidenz von Chromosomenaberrationen niedrig und konstant ist. Die Baseline-Inzidenz von Chromosomenaberrationen steigt mit dem Alter, wobei dieser Trend bei Frauen ausgeprägter ist als bei Männern (17) (18). Wenn Zellen mehrerer Spender zwecks Verwendung gepoolt werden, ist die Zahl der Spender anzugeben. Es muss nachgewiesen werden, dass sich die Zellen zwischen Behandlungsbeginn und Zellentnahme geteilt haben. Die Zellkulturen werden in einer Phase exponentiellen Wachstums gehalten (Zelllinien) oder zur Teilung angeregt (primäre Lymphozytenkulturen), um Zellen in unterschiedlichen Zyklusstadien zu exponieren, da die Empfindlichkeit der Zellstadien gegenüber den Prüfchemikalien möglicherweise nicht bekannt ist. Die Primärzellen, die mit mitogenen Wirkstoffen zur Teilung angeregt werden müssen, werden in der Regel während der Behandlung mit der Prüfchemikalie nicht weiter synchronisiert (z.B. humane Lymphozyten nach einer 48-stündigen mitogenen Stimulation). Die Verwendung synchronisierter Zellen während der Behandlung wird nicht empfohlen, kann jedoch zulässig sein, sofern gerechtfertigt.

Kulturmedien und Inkubationsbedingungen

Die Kultivierung erfordert geeignete Kulturmedien und Inkubationsbedingungen (Kulturgefäße, ggf. befeuchtete Atmosphäre mit einer CO2-Konzentration von 5 %, Inkubationstemperatur von 371 °C). Zelllinien sind routinemäßig auf Stabilität der modalen Chromosomenzahl und Mycoplasma-Verunreinigung zu überprüfen (7) (19); bei Verunreinigung oder bei veränderter modaler Chromosomenzahl sollten Zellen nicht verwendet werden. Die normale Dauer des Zellzyklus sollte bei den gewählten Zelllinien oder den im Prüflabor verwendeten primären Kulturen bekannt sein und mit veröffentlichten Zellcharakteristiken übereinstimmen (20).

Vorbereitung der Kulturen

Zelllinien: Die Zellen werden aus Stammkulturen gewonnen und im Kulturmedium in einer solchen Dichte überimpft, dass die Zellen in Suspensionen oder Monolayern bis zum Zeitpunkt ihrer Ernte weiterhin exponentiell wachsen (z.B. sollte eine Konfluenz bei in Monolayern gezüchteten Zellen vermieden werden).

Lymphozyten: Mit einem Antikoagulans (z.B. Heparin) behandeltes Vollblut oder separierte Lymphozyten werden einem Kulturmedium beigegeben (z.B. im Fall von humanen Lymphozyten für die Dauer von 48 Stunden), das ein Mitogen (z.B. Phytohämagglutinin (PHA) bei humanen Lymphozyten) enthält, um eine Zellteilung vor der Behandlung mit der Prüfchemikalie herbeizuführen.

Stoffwechselaktivierung

Bei Zellen mit unzulänglicher endogener Stoffwechselkapazität sollten exogene metabolisierende Systeme verwendet werden. Das gängigste und, sofern nicht anders begründet, standardmäßig empfohlene System, ist eine durch Ko-Faktoren ergänzte post-mitochondriale Fraktion (S9) aus der Leber von Nagetieren (in der Regel Ratten), die mit enzyminduzierenden Agenzien wie Aroclor 1254 (21) (22) (23) oder einer Kombination aus Phenobarbiton und β-Naphtoflavon (24) (25) (26) (27) (28) (29) vorbehandelt wurde. Letztere Kombination verstößt nicht gegen das Stockholmer Übereinkommen über persistente organische Schadstoffe (30) und hat sich für die Induktion von Multifunktionsoxidasen als ebenso wirksam wie Aroclor 1254 erwiesen (24) (25) (26) (28). Die S9-Fraktion wird im Endmedium in der Regel in Konzentrationen von 1 bis 2 % v/v verwendet, kann jedoch auf 10 % v/v erhöht werden. Die Verwendung von Produkten, die den Mitoseindex senken, insbesondere Komplexbildner für Calcium (31), sollten während der Behandlung vermieden werden. Die Wahl der Art und Konzentration des exogenen Metabolisierungssystems oder metabolischen Agens ist möglicherweise von der Klasse der geprüften Chemikalien abhängig.

Vorbereitung der Prüfchemikalie

Feste Prüfchemikalien sollten vor der Zellbehandlung in geeigneten Lösungsmitteln gelöst und ggf. verdünnt werden (siehe Nummer 23). Flüssige Prüfchemikalien können dem Versuchssystem vor der Behandlung direkt zugegeben und/oder verdünnt werden. Gasförmige oder flüchtige Prüfchemikalien sind durch entsprechende Modifikationen der Standardprotokolle zu prüfen, z.B. durch Behandlung in hermetisch verschlossenen Kulturgefäßen (32) (33) (34). Zubereitungen der Prüfchemikalie sollten kurz vor der Behandlung hergestellt werden, es sei denn, die Chemikalie ist bei Lagerung nachweislich stabil.

Prüfbedingungen

Lösungsmittel

Das Lösungsmittel sollte so gewählt werden, dass eine optimale Löslichkeit der Prüfchemikalie gewährleistet ist, ohne dass die Durchführung des Versuchs beeinträchtigt wird, z.B. durch Veränderung des Zellwachstums, Beeinträchtigung der Integrität der Prüfchemikalie, Reaktion mit Kulturgefäßen, Behinderung des Metabolisierungssystems. Es ist empfiehlt sich, als erste Wahl die Verwendung eines wässrigen Lösungsmittels (oder Kulturmediums) in Erwägung zu ziehen. Gründlich erprobte Lösungsmittel sind z.B. Wasser oder Dimethylsulfoxid. Organische Lösungsmittel sollten 1 % v/v und wässrige Lösungsmittel (Kochsalzlösung oder Wasser) sollten 10 % v/v im Endmedium möglichst nicht überschreiten. Werden weniger gründlich erprobte Lösungsmittel verwendet (z. B Ethanol oder Aceton), so ist dies durch Daten zu untermauern, die ihre Verträglichkeit mit der Prüfchemikalie und mit dem Versuchssystem sowie ihre mangelnde Gentoxizität in der verwendeten Konzentration belegen. Liegen keine Daten vor, die dies belegen, sollten unbedingt unbehandelte Kontrollen (siehe Anlage 1) einbezogen werden, um nachzuweisen, dass durch die gewählten Lösungsmittel keine schädlichen oder klastogenen Wirkungen ausgelöst werden.

Messung von Zellproliferation und Zytotoxizität und Wahl der Behandlungskonzentrationen

Bei der Bestimmung der höchsten Konzentration der Prüfchemikalie sind Konzentrationen zu vermeiden, die zu künstlich positiven Reaktionen führen können, z.B. zu übermäßiger Zytotoxizität (siehe Nummer 22), Ausfällungen im Kulturmedium (siehe Nummer 23) oder ausgeprägten Veränderungen des pH-Werts oder der Osmolalität (siehe Nummer 5). Sofern die Prüfchemikalie zum Zeitpunkt der Zugabe den pH-Wert des Mediums erheblich verändert, lässt sich dieser auch durch Zugabe eines Puffers ins Endmedium einstellen, damit künstlich positive Reaktionen vermieden und geeignete Kulturbedingungen aufrechterhalten werden.

Es sind Messungen der Zellproliferation vorzunehmen, um sicherzustellen, dass während des Tests eine ausreichende Zahl behandelter Zellen eine Mitose durchlaufen hat und dass die Behandlungen auf geeigneten Zytotoxizitätsniveaus durchgeführt werden (siehe Nummern 18 und 22). Die Zytotoxizität sollte im Hauptversuch mit und ohne Stoffwechselaktivierung unter Verwendung eines geeigneten Indikators für Zelltod und -wachstum bestimmt werden. Wenngleich die Bewertung der Zytotoxizität im Rahmen eines Vorversuchs nützlich sein kann, um eine bessere Bestimmung der im Hauptversuch verwendeten Konzentrationen vornehmen zu können, ist ein Vorversuch nicht zwingend erforderlich. Wird er durchgeführt, ersetzt er nicht die Messung der Zytotoxizität im Hauptversuch.

Die relative Populationsverdopplung (RPD) oder die relative Erhöhung der Zellzahl (RICC) sind geeignete Verfahren zur Bewertung der Zytotoxizität in zytogenetischen Versuchen (13) (15) (35) (36) (55) (Formeln siehe Anlage 2). Bei Langzeitbehandlungen und Probenahmezeitpunkten nach Beginn der Behandlung, die über 1,5 normale Zellzykluslängen (d. h. mehr als 3 Zellzykluslängen insgesamt) andauern, könnte es bei der RPD zu einer Unterschätzung der Toxizität kommen (37). Unter diesen Umständen ist die RICC möglicherweise das bessere Verfahren; anderenfalls erhält man bei Bewertung der Zytotoxizität nach 1,5 normalen Zellzykluslängen beim RPD-Verfahren einen hilfreichen Schätzwert.

Bei Lymphozyten in Primärkulturen ist der Mitoseindex (MI), auch wenn er ein geeigneter Wert zur Messung zytotoxischer/zytostatischer Wirkungen ist, abhängig vom Zeitpunkt der Messung nach der Behandlung, vom verwendeten Mitogen sowie möglichen Störungen des Zellzyklus. Der MI ist jedoch zulässig, da andere Verfahren zur Messung der Zytotoxizität möglicherweise zu komplex und wenig praktikabel und nicht auf die Zielpopulation der Lymphozyten anwendbar sind, die infolge der PHA-Stimulation wachsen.

Zwar sind das RICC- bzw. das RPD-Verfahren für Zelllinien und der MI für Primärkulturen von Lymphozyten die empfohlenen Zytotoxizitätsparameter, weitere Indikatoren (z.B. Zellintegrität, Apoptose, Nekrose, Zellzyklus) könnten jedoch nützliche Zusatzinformationen liefern.

Es sollten mindestens drei Versuchskonzentrationen (ausgenommen Lösungsmittel und Positivkontrollen), die die Akzeptanzkriterien erfüllen (geeignete Zytotoxizität, Anzahl der Zellen usw.), ausgewertet werden. Unabhängig von der Art der Zellen (Zelllinien oder Primärkulturen von Lymphozyten) können für jede überprüfte Konzentration Replikat- oder Einfachkulturen verwendet werden. Wenngleich die Verwendung von Zweifachkulturen ratsam ist, sind Einfachkulturen auch zulässig, vorausgesetzt, es wird für Einfach- oder Zweifachkulturen jeweils die gleiche Gesamt-Zellpopulation ausgewertet. Die Verwendung von Einzelkulturen ist insbesondere dann relevant, wenn mehr als drei Konzentrationen bewertet werden (siehe Nummer 31). Die Ergebnisse aus den unabhängigen Replikatkulturen bei einer gegebenen Konzentration können zu Datenanalysezwecken gepoolt werden (38). Bei Prüfchemikalien mit geringer oder ohne Zytotoxizität sind in der Regel Konzentrationsintervalle mit zwei- bis dreifacher Konzentration geeignet. Wenn Zytotoxizität auftritt, sollten die Versuchskonzentrationen einen Bereich ausgehend von dem Wert, bei dem Zytotoxizität auftritt (siehe Beschreibung unter Nummer 22), bis zu Konzentrationen mit mäßiger und geringer oder nicht vorhandener Toxizität umfassen. Viele Prüfchemikalien zeigen steile Konzentrations-Wirkungs-Kurven, und um Daten bei mäßiger oder geringer Toxizität zu erhalten oder die Dosis-Wirkungs-Beziehung im Einzelnen auszuwerten, wird es erforderlich sein, Konzentrationen mit kleineren Abständen und/oder mehr als drei Konzentrationen zu verwenden (Einfach- oder Replikatkulturen), insbesondere in Fällen, in denen ein Wiederholungsversuch erforderlich ist (siehe Nummer 47).

Beruht die höchste Konzentration auf Zytotoxizität, so sollte versucht werden, unter Verwendung der empfohlenen Zytotoxizitätsparameter (d. h. Verringerung der RICC und RPD bei Zelllinien und Verringerung des MI bei Primärkulturen von Lymphozyten auf 45 ± 5 % der gleichzeitigen Negativkontrolle) mit der höchsten Konzentration eine Zytotoxizität von 55 ± 5 % zu erreichen. Vorsicht ist geboten, positive Ergebnisse dahingehend zu interpretieren, dass sie ausschließlich am oberen Ende dieses zytotoxischen Bereichs von 55 ± 5 % anzutreffen sind (13).

Im Falle schwer löslicher Chemikalien, die bei Konzentrationen unterhalb der niedrigsten unlöslichen Konzentration nicht zytotoxisch sind, sollte die höchste analysierte Konzentration am Ende der Behandlung mit der Prüfchemikalie eine Trübung oder eine mit bloßem Auge oder mithilfe eines inversen Mikroskops erkennbare Ausfällung bewirken. Auch wenn Zytotoxizität oberhalb der niedrigsten unlöslichen Konzentration auftritt, ist es ratsam, nur eine Konzentration zu testen, bei der es zu einer Trübung oder sichtbaren Ausfällung kommt, da künstliche Wirkungen eine Folge dieser Ausfällung sein könnten. Bei der Konzentration, bei der es zu einer Ausfällung kommt, ist unbedingt sicherzustellen, dass die Ausfällung die Durchführung des Versuchs nicht beeinträchtigt (z.B. Färbung oder Auswertung). Es ist möglicherweise sinnvoll, die Löslichkeit im Kulturmedium vor dem Versuch zu bestimmen.

Wird keine Ausfällung bzw. keine grenzwertige Zytotoxizität beobachtet, sollte die höchste Versuchskonzentration 10 mM, 2 mg/ml oder 2 µl/ml entsprechen, je nachdem, welcher Wert der niedrigere ist (39) (40) (41). Sofern die Zusammensetzung der Prüfchemikalie nicht vorgegeben ist, es sich z.B. um einen Stoff mit unbekannter oder schwankender Zusammensetzung, um komplexe Reaktionsprodukte oder biologische Materialien (UVCB) (42), einen Umweltextrakt usw. handelt, muss die höchste Konzentration möglicherweise höher angesetzt werden (z.B. bei 5 mg/ml), sofern keine ausreichende Zytotoxizität vorhanden ist, um die Konzentration der einzelnen Komponenten zu erhöhen. Es sei jedoch darauf hingewiesen, dass diese Anforderungen sich von denen für Humanpharmazeutika unterscheiden können (43).

Kontrollen

Bei jedem Zellerntezeitpunkt sind gleichzeitige Negativkontrollen (siehe Nummer 15) zu berücksichtigen, bei denen das Behandlungsmedium lediglich Lösungsmittel enthält und die auf die gleiche Weise wie die Behandlungskulturen behandelt werden.

Gleichzeitige Positivkontrollen müssen angelegt werden, um die Eignung des Labors zum Nachweis von Klastogenen unter den Bedingungen des verwendeten Prüfprotokolls sowie ggf. die Wirksamkeit des exogenen Metabolisierungssystems nachzuweisen. Beispiele für Positivkontrollen sind Tabelle 1 zu entnehmen. Es können andere geeignete Positivkontrollchemikalien verwendet werden, sofern gerechtfertigt. Da In-vitro-Tests auf Gentoxizität in Säugetierzellen ausreichend standardisiert sind, kann sich die Hinzuziehung von Positivkontrollen auf ein Klastogen beschränken, das eine Stoffwechselaktivierung erfordert. Unter der Voraussetzung, dass diese einzeln durchgeführte Positivkontrolle zeitgleich zu dem nicht aktivierten Versuch mit derselben Behandlungsdauer erfolgt, wird durch ihre Wirkung sowohl die Aktivität des Metabolisierungssystems als auch die Reaktionsfähigkeit des Versuchssystems nachgewiesen. Im Falle einer Langzeitbehandlung (ohne S9) sollte jedoch eine gesonderte Positivkontrolle erfolgen, da die Behandlungsdauer beim Versuch mit Stoffwechselaktivierung eine andere ist. Jede Positivkontrolle sollte bei einer oder mehreren Konzentrationen durchgeführt werden, die voraussichtlich eine reproduzierbare und erkennbare Zunahme gegenüber dem Hintergrund ergeben, womit sich die Empfindlichkeit des Versuchssystems nachweisen lässt (d. h. die Wirkungen sind eindeutig, lassen aber beim Ablesen nicht sofort die Identität der kodierten Objektträger erkennen), und die Wirkung sollte nicht durch einen Zytotoxizitätswert beeinträchtigt werden, der die in der Prüfmethode vorgegebenen Grenzen überschreitet.

Tabelle 1 Zur Beurteilung der Eignung des Labors und zur Wahl der Positivkontrollen empfohlene Referenzchemikalien

KategorieChemikalieCAS-Nr.
1. Klastogene, die ohne Stoffwechselaktivierung wirken
Methylmethansulfonat66-27-3
Mitomycin C50-07-7
4-Nitroquinolin-N-oxid56-57-5
Cytosinarabinosid147-94-4
2. Klastogene, die eine Stoffwechselaktivierung erfordern
Benzo[a]pyren50-32-8
Cyclophosphamid50-18-0

Verfahren

Behandlung mit der Prüfchemikalie

Proliferierende Zellen werden mit und ohne Stoffwechselaktivierungssystem mit der Prüfchemikalie behandelt.

Zeitpunkt der Zellernte

Um eine genaue Bewertung zu ermöglichen, die erforderlich wäre, um auf ein negatives Ergebnis schließen zu können, sollte jede der drei nachgenannten Versuchsbedingungen getestet werden - eine Kurzzeitbehandlung mit und ohne Stoffwechselaktivierung und eine Langzeitbehandlung ohne Stoffwechselaktivierung (siehe Nummern 43, 44 und 45):

In Fällen, in denen eine der oben genannten Versuchsbedingungen zu einem positiven Befund führt, kann möglicherweise auf Untersuchungen nach den anderen Behandlungsverfahren verzichtet werden.

Chromosomenpräparation

Die Zellkulturen werden vor der Gewinnung in der Regel ein bis drei Stunden lang mit Colcemid oder Colchicin behandelt. Für die Chromosomenpräparation wird jede Zellkultur gesondert geerntet und aufgearbeitet. Zur Chromosomenpräparation gehören die Behandlung der Zellen mit hypotoner Lösung, die Fixierung und das Anfärben. In Monolayern können am Ende der 3- bis 6-stündigen Behandlung mitotische Zellen vorhanden sein (diese sind daran zu erkennen, dass sie rund sind und sich von der Oberfläche lösen). Da diese mitotischen Zellen sich leicht lösen, können sie bei Entfernung des Mediums mit der Prüfchemikalie verloren gehen. Kann nachgewiesen werden, dass verglichen mit den Kontrollen die Zahl der mitotischen Zellen erheblich zugenommen hat, was mit hoher Wahrscheinlichkeit auf einen mitotischen Arrest hinweist, sollten die Zellen durch Zentrifugieren gesammelt und anschließend den Kulturen wieder zugeführt werden, um zu vermeiden, dass Zellen verlorengehen, die sich in der Mitose befinden und zum Zeitpunkt der Gewinnung dem Risiko einer Chromosomenaberration ausgesetzt sind.

Analyse

Alle Objektträger, auch die für die Positiv- und Negativkontrollen, sollten vor der mikroskopischen Untersuchung von unabhängiger Seite kodiert werden. Da es bei der Fixierung bei einem Teil der Metaphasezellen häufig zum Verlust von Chromosomen kommt, sollten die ausgewerteten Zellen daher eine Zentromerzahl enthalten, die bei allen Zelltypen dem Modalwert ± 2 entspricht.

Es sollten mindestens 300 gut gespreitete Metaphasen je Konzentration und Kontrolle analysiert werden, um schlussfolgern zu können, dass eine Prüfchemikalie eindeutig negativ ist (siehe Nummer 45). Die 300 Zellen sind gleichmäßig auf die Replikate zu verteilen, sofern solche verwendet werden. Bei der Verwendung von Einzelkulturen je Konzentration (siehe Nummer 21) sollten mindestens 300 gut gespreitete Metaphasen in dieser Einzelkultur analysiert werden. Die Analyse von 300 Zellen hat den Vorteil, dass die statistische Aussagekraft des Versuchs erhöht wird; zudem sind dann kaum Nullwerte zu erwarten (erwartungsgemäß nur 5 %) (44). Die Anzahl der zu analysierenden Metaphasen kann verringert werden, wenn eine hohe Zahl von Zellen mit Chromosomenaberrationen beobachtet wird und die Prüfchemikalie als eindeutig positiv gilt.

Zellen mit einer oder mehreren strukturellen Chromosomenaberration(en) mit und ohne Gaps sollten analysiert werden. Brüche und Gaps sind gemäß (45) (46) in Anlage 1 definiert. Chromatidentyp- und Chromosomentypaberration sollten getrennt erfasst und Subtypen zugeordnet werden (Brüche, Austausche). Die im Labor angewandten Verfahren sollten gewährleisten, dass die Analyse von Chromosomenaberrationen von qualifizierten Technikern ausgeführt und ggfs. einer Peer-Review unterzogen wird.

Obwohl es bei dem Test um den Nachweis struktureller Chromosomenaberrationen geht, ist das Auftreten von Polyploidie und Endoreduplikation unbedingt festzuhalten (siehe Nummer 2).

Kompetenz des Labors

Um ausreichende Erfahrung mit der Durchführung des Versuchs nachzuweisen, bevor er für routinemäßige Testungen angewendet wird, sollte das Labor eine Reihe von Versuchen mit positiven Referenzchemikalien durchgeführt haben, die sich unterschiedlicher Mechanismen und verschiedener Negativkontrollen bedienen (unter Verwendung verschiedener Lösungsmittel/Vehikel). Die Reaktionen dieser Positiv- und Negativkontrollen sollten der Literatur entsprechen. Dies gilt nicht für erfahrene Laboratorien, d. h. für Laboratorien, die über eine historische Datenbank im Sinne von Nummer 37 verfügen.

Eine Auswahl von Positivkontrollchemikalien (siehe Tabelle 1 unter Nummer 26) sollte anhand von Kurz- und Langzeitbehandlungen ohne Stoffwechselaktivierung und darüber hinaus anhand einer Kurzzeitbehandlung mit Stoffwechselaktivierung untersucht werden, um die Eignung des Labors zum Nachweis klastogener Chemikalien und zur Bestimmung der Wirksamkeit des Metabolisierungssystems zu belegen. Zum Nachweis der Empfindlichkeit und dynamischen Bandbreite des Versuchssystems sollten mehrere Konzentrationen der ausgewählten Chemikalien ausgewählt werden, um reproduzierbare und konzentrationsbezogene Zunahmen gegenüber dem Hintergrund zu erhalten.

Historische Kontrolldaten

Das Labor sollte Folgendes nachweisen:

Beim erstmaligen Erwerb von Daten zur Verteilung einer historischen Negativkontrolle sollten gleichzeitige Negativkontrollen veröffentlichten Kontrolldaten entsprechen, soweit solche vorhanden sind. Kommen weitere Versuchsdaten zur Verteilung der Kontrollen hinzu, sollten gleichzeitige Negativkontrollen idealerweise innerhalb von 95 % der Kontrollgrenzen der gewählten Verteilung liegen (44) (47). Die Datenbank des Labors für historische Negativkontrollen sollte zunächst mit mindestens 10 Versuchen angelegt werden. Vorzugsweise sollte sie jedoch aus mindestens 20 Versuchen bestehen, die unter vergleichbaren Versuchsbedingungen durchgeführt wurden. Labors sollten Qualitätskontrollverfahren anwenden, wie z.B. Qualitätsregelkarten (z.B. C-Karten oder X-Bar-Karten (48)), um zu ermitteln, wie variabel ihre Positiv- und Negativkontrolldaten sind, und um nachzuweisen, dass die Methodik in ihrem Labor "unter Kontrolle" ist (44). Weitere Empfehlungen zu Aufbau und historischer Datensammlungen (d. h. Kriterien für die Aufnahme und den Ausschluss von Daten in bzw. aus historischen Datensammlungen und die Akzeptanzkriterien für einen bestimmten Versuch) sind den Literaturhinweisen zu entnehmen (47).

Etwaige Änderungen am Versuchsprotokoll sollten auf Übereinstimmung mit den bereits vorhandenen historischen Kontrolldatenbanken geprüft werden. Bei größeren Unstimmigkeiten sollte eine neue historische Kontrolldatenbank erstellt werden.

Daten über Negativkontrollen sollten das Auftreten von Zellen mit Chromosomenaberrationen aus einer Einzelkultur oder aus einer Summe von Replikatkulturen umfassen (vgl. Beschreibung unter Punkt 21). Gleichzeitige Negativkontrollen sollten idealerweise innerhalb der Kontrollgrenzen von 95 % der gewählten Verteilung in der Datenbank des Labors zu historischen Negativkontrollen liegen (44) (47). Sofern gleichzeitige Negativkontrolldaten außerhalb der Kontrollgrenzen von 95 % liegen, ist es zulässig, sie in die historische Kontrollverteilung aufzunehmen, solange es sich bei den Daten nicht um "extreme Ausreißer" handelt und nachgewiesen werden kann, dass das Versuchssystem "unter Kontrolle" ist (siehe Nummer 37) und nachweislich kein technisches oder menschliches Versagen vorliegt.

Daten und Berichterstattung

Präsentation der Ergebnisse

Bewertet werden sollte der Anteil der Zellen mit struktureller Chromosomenaberration bzw. strukturellen Chromosomenaberrationen. Chromatidentyp- und Chromosomentypaberrationen, die Subtypen zugeordnet sind (Brüche, Austausche), sollten dabei unter Angabe ihrer Anzahl und Häufigkeit für Versuchs- und Kontrollkulturen getrennt erfasst werden. Gaps werden getrennt erfasst und angegeben, aber in der Regel nicht bei der Gesamthäufigkeit der Aberrationen berücksichtigt. Der Anteil der Zellen mit Polyploidie und/oder Endoreduplikation wird angegeben, sofern beobachtet.

Erfasst werden sollten auch Maßnahmen, die in den Hauptprüfungen auf Aberrationen gleichzeitig zur Bestimmung der Zytotoxizität aller behandelten und Negativ- sowie Positivkontrollkulturen durchgeführt werden.

Die Daten für die einzelnen Kulturen sollten erfasst dokumentiert werden. Zusätzlich sollten alle Daten in tabellarischer Form zusammengefasst werden.

Gültigkeitskriterien

Die Akzeptanz eines Versuchs beruht auf folgenden Kriterien:

Auswertung und Interpretation der Ergebnisse

Unter der Voraussetzung, dass alle Akzeptanzkriterien erfüllt sind, gilt eine Prüfchemikalie als eindeutig positiv, wenn bei einer der getesteten Versuchsbedingungen (siehe Nummer 28):

  1. mindestens eine der Versuchskonzentrationen, verglichen mit der gleichzeitigen Negativkontrolle, eine statistisch signifikante Zunahme aufweist,
  2. die Zunahme bei der Bewertung anhand eines geeigneten Trendtests dosisabhängig ist,
  3. eines der Ergebnisse außerhalb der Verteilung der historischen Negativkontrolldaten liegt (z.B. auf einer Poisson-Verteilung beruhende Kontrollgrenzen von 95 %, siehe Nummer 39).

Sind all diese Kriterien erfüllt, wird davon ausgegangen, dass die Prüfchemikalie Chromosomenaberrationen in Säugerzellkulturen in diesem Versuchssystem auslösen kann. Für Empfehlungen zu den am besten geeigneten statistischen Methoden siehe Literaturhinweise (49) (50) (51).

Unter der Voraussetzung, dass alle Akzeptanzkriterien erfüllt sind, gilt eine Prüfchemikalie als eindeutig negativ, wenn in allen getesteten Versuchsbedingungen (siehe Punkt 28):

  1. keine der Versuchskonzentrationen, verglichen mit der gleichzeitigen Negativkontrolle, eine statistisch signifikante Zunahme aufweist,
  2. bei der Bewertung anhand eines geeigneten Trendtests keine dosisabhängige Zunahme erfolgt ist,
  3. alle Ergebnisse innerhalb der Verteilung der historischen Negativkontrolldaten liegen (z.B. auf einer Poisson-Verteilung beruhende Kontrollgrenzen von 95 %, siehe Nummer 39).

Es wird dann davon ausgegangen, dass die Prüfchemikalie keine Chromosomenaberrationen in Säugerzellkulturen in diesem Versuchssystem auslösen kann.

Bei einer eindeutig positiven oder negativen Reaktion ist eine Verifizierung nicht erforderlich.

In den Fällen, in denen die Reaktion, wie oben beschrieben, weder eindeutig negativ noch eindeutig positiv ist, oder um die biologische Relevanz eines Ergebnisses zu untermauern, sollten die Daten durch eine fachkundige Beurteilung und/oder anhand weiterer Untersuchungen bewertet werden. Die Auswertung (ggf.) weiterer Zellen oder die Durchführung eines Wiederholungsversuchs, möglicherweise unter veränderten Versuchsbedingungen (z.B. Abstände der Konzentrationen, andere Metabolisierungsbedingungen (d. h. Konzentration (S9) oder Herkunft (S9)), könnten hilfreich sein.

In seltenen Fällen lässt der Datensatz selbst nach weiteren Untersuchungen keine definitive Schlussfolgerung zu positiven oder negativen Ergebnissen zu; in diesem Fall wird die Reaktion der Prüfchemikalie als unschlüssig eingestuft.

Eine zahlenmäßige Zunahme der polyploiden Zellen deutet möglicherweise darauf hin, dass die Prüfchemikalie mitotische Prozesse zu hemmen und numerische Chromosomenaberrationen hervorzurufen vermag (52). Eine zahlenmäßige Zunahme der Zellen mit endoreduplizierten Chromosomen ist möglicherweise ein Anzeichen dafür, dass die Prüfchemikalie die Zellzyklusprogression zu hemmen vermag (53) (54) (siehe Nummer 2). Die Inzidenz von polyploiden Zellen und Zellen mit endoreduplizierten Chromosomen sollte daher getrennt erfasst werden.

Prüfbericht

Der Prüfbericht muss folgende Angaben enthalten:

Prüfchemikalie:

Einkomponentiger Stoff:

Mehrkomponentiger Stoff, UVCB-Stoffe und Gemische:

Lösungsmittel:

Zellen:

Prüfbedingungen:

Ergebnisse:

Diskussion der Ergebnisse.

Schlussfolgerungen

Literaturhinweise

(1) OECD (2016). Overview of the set of OECD Genetic Toxicology Test Guidelines and updates performed in 2014-2015. ENV Publications. Series on Testing and Assessment, No. 234, OECD, Paris.

(2) Evans, H.J. (1976), Cytological Methods for Detecting Chemical Mutagens, in Chemical Mutagens, Principles and Methods for their Detection, Band 4, Hollaender, A. (ed.), Plenum Press, New York und London, 1-29

(3) Ishidate, M. Jr., T. Sofuni (1985), The in vitro Chromosomal Aberration Test Using Chinese Hamster Lung (CHL) Fibroblast Cells in Culture in Progress in Mutation Research, Bd. 5, Ashby, J. et al. (eds.), Elsevier Science Publishers, Amsterdam-New York-Oxford, 427-432.

(4) Galloway, S.M. et al. (1987), Chromosomal aberration and sister chromatid exchanges in Chinese hamster ovary cells: Evaluation of 108 chemicals, Environmental and Molecular Mutagenesis, Bd. 10/Ergänz. 10, 1-175.

(5) Muehlbauer, P.A. et al. (2008), Improving dose selection and identification of aneugens in the in vitro chromosome aberration test by integration of flow cytometry-based methods, Environmental and Molecular Mutagenesis, Band 49/4, 318-327.

(6) Kapitel B.49 dieses Anhangs: In-vitro-Mikronukleustest an Säugetierzellen.

(7) ILSI paper (draft), Lorge, E., M. Moore, J. Clements, M. O Donovan, F. Darroudi, M. Honma, A. Czich, J van Benthem, S. Galloway, V. Thybaud, B. Gollapudi, M. Aardema, J. Kim, D.J. Kirkland, Recommendations for good cell culture practices in genotoxicity testing.

(8) Scott, D. et al. (1991), Genotoxicity under Extreme Culture Conditions. A report from ICPEMC Task Group 9, Mutation Research/Reviews in Genetic Toxicology, Bd. 257/2, 147-204.

(9) Morita, T. et al. (1992), Clastogenicity of Low pH to Various Cultured Mammalian Cells, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Bd. 268/2, 297-305.

(10) Brusick, D. (1986), Genotoxic effects in cultured mammalian cells produced by low pH treatment conditions and increased ion concentrations, Environmental and Molecular Mutagenesis, Bd. 8/6, 789-886.

(11) Long, L.H. et al. (2007), Different cytotoxic and clastogenic effects of epigallocatechin gallate in various cell-culture media due to variable rates of its oxidation in the culture medium, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Bd. 634/1-2, 177-183.

(12) Nesslany, F. et al. (2008), Characterization of the Genotoxicity of Nitrilotriacetic Acid, Environmental and Molecular Mutagenesis, Bd. 49/6, 439-452.

(13) Galloway, S. (2000), Cytotoxicity and chromosome aberrations in vitro: Experience in industry and the case for an upper limit on toxicity in the aberration assay, Environmental and Molecular Mutagenesis, Bd. 35/3, 191-201.

(14) Kirkland, D. et al. (2005), Evaluation of the ability of a battery of three in vitro genotoxicity tests to discriminate rodent carcinogens and non-carcinogens. I: Sensitivity, specificity and relative predictivity, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Bd.584/1-2, 1-256.

(15) Greenwood, S. et al. (2004), Population doubling: a simple and more accurate estimation of cell growth suppression in the in vitro assay for chromosomal aberrations that reduces irrelevant positive results, Environmental and Molecular Mutagenesis, Bd. 43/1, 36-44.

(16) Hilliard, C.A. et al. (1998), Chromosome aberrations in vitro related to cytotoxicity of nonmutagenic chemicals and metabolic poisons, Environmental and Molecular Mutagenesis, Bd.31/4, 316-326.

(17) Hedner K. et al. (1982), Sister chromatid exchanges and structural chromosomal aberrations in relation to age and sex, Human Genetics, Bd. 62, 305-309.

(18) Ramsey M.J. et al. (1995), The effects of age and lifestyle factors on the accumulation of cytogenetic damage as measured by chromosome painting, Mutation Research, Bd. 338, 95-106.

(19) Coecke S. et al. (2005), Guidance on Good Cell Culture Practice. A Report of the Second ECVAM Task Force on Good Cell Culture Practice, ATLA, Bd. 33/3, 261-287.

(20) Henderson, L. et al. (1997), Industrial Genotoxicology Group collaborative trial to investigate cell cycle parameters in human lymphocyte cytogenetics studies, Mutagenesis, Bd. 12/3, 163-167.

(21) Ames, B.N., J. McCann, E. Yamasaki (1975), Methods for Detecting Carcinogens and Mutagens with the Salmonella/Mammalian Microsome Mutagenicity Test, Mutation Research/Environmental Mutagenesis and Related Subjects, Bd. 31/6, 347-363.

(22) Maron, D.M., B.N. Ames (1983), Revised Methods for the Salmonella Mutagenicity Test, Mutation Research/Environmental Mutagenesis and Related Subjects, Bd. 113/3-4, 173-215.

(23) Natarajan, A.T. et al. (1976), Cytogenetic Effects of Mutagens/Carcinogens after Activation in a Microsomal System In Vitro, I. Induction of Chromosomal Aberrations and Sister Chromatid Exchanges by Diethylnitrosamine (DEN) and Dimethylnitrosamine (DMN) in CHO Cells in the Presence of Rat-Liver Microsomes, Mutation Research, Bd. 37/1, 83-90.

(24) Matsuoka, A., M. Hayashi, M. Jr. Ishidate (1979), Chromosomal Aberration Tests on 29 Chemicals Combined with S9 Mix in vitro, Mutation Research/Genetic Toxicology, Bd. 66/3, 277-290.

(25) Ong, T.-m. et al. (1980), Differential effects of cytochrome P450-inducers on promutagen activation capabilities and enzymatic activities of S-9 from rat liver, Journal of Environmental Pathology and Toxicology, Bd. 4/1, 55-65.

(26) Elliot, B.M. et al. (1992), Report of UK Environmental Mutagen Society Working Party. Alternatives to Aroclor 1254-induced S9 in in vitro Genotoxicity Assays, Mutagenesis, Bd. 7/3, 175-177.

(27) Matsushima, T. et al. (1976), A Safe Substitute for Polychlorinated Biphenyls as an Inducer of Metabolic Activation Systems, in In Vitro Metabolic Activation in Mutagenesis Testing, de Serres, F.J. et al. (Herausgeber.), Elsevier, North-Holland, 85-88.

(28) Galloway, S.M. et al. (1994). Report from Working Group on in vitro Tests for Chromosomal Aberrations, Mutation Research/Environmental Mutagenesis and Related Subjects, Bd. 312/3, 241-261.

(29) Johnson, T.E., D.R. Umbenhauer, S.M. Galloway (1996), Human liver S-9 metabolic activation: proficiency in cytogenetic assays and comparison with phenobarbital/beta-naphthoflavone or Aroclor 1254 induced rat S-9, Environmental and Molecular Mutagenesis, Bd. 28/1, 51-59.

(30) UNEP (2001), Stockholm Convention on Persistent Organic Pollutants, United Nations Environment Programme (UNEP). Abrufbar unter: http://www.pops.int/.

(31) Tucker, J.D., M.L. Christensen (1987), Effects of anticoagulants upon sister-chromatid exchanges, cell-cycle kinetics, and mitotic index in human peripheral lymphocytes, Mutation Research, Bd. 190/3, 225-8.

(32) Krahn, D.F., F.C. Barsky, K.T. McCooey (1982), CHO/HGPRT Mutation Assay: Evaluation of Gases and Volatile Liquids, in Genotoxic Effects of Airborne Agents, Tice, R.R., D.L. Costa, K.M. Schaich (eds.), Plenum, New York, 91-103.

(33) Zamora, P.O. et al. (1983), Evaluation of an Exposure System Using Cells Grown on Collagen Gels for Detecting Highly Volatile Mutagens in the CHO/HGPRT Mutation Assay, Environmental and Molecular Mutagenesis, Bd. 5/6, 795-801.

(34) Asakura, M. et al. (2008), An improved system for exposure of cultured mammalian cells to gaseous compounds in the chromosomal aberration assay, Mutation Research, Bd. 652/2, 122-130.

(35) Lorge, E. et al. (2008), Comparison of different methods for an accurate assessment of cytotoxicity in the in vitro micronucleus test. I. Theoretical aspects, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Bd. 655/1-2, 1-3.

(36) Galloway, S. et al. (2011), Workshop summary: Top concentration for in vitro mammalian cell genotoxicity assays; and Report from working group on toxicity measures and top concentration for in vitro cytogenetics assays (chromosome aberrations and micronucleus), Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Bd. 723/2, 77-83.

(37) Honma, M. (2011), Cytotoxicity measurement in in vitro chromosome aberration test and micronucleus test, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Bd. 724/1-2, 86-87.

(38) Richardson, C. et al. (1989), Analysis of Data from In Vitro Cytogenetic Assays. In: Statistical Evaluation of Mutagenicity Test Data, Kirkland, D.J. (ed.) Cambridge University Press, Cambridge, 141-154.

(39) OECD (2014), Document supporting the WNT decision to implement revised criteria for the selection of the top concentration in the in vitro mammalian cell assays on genotoxicity (Test Guidelines 473, 476 and 487) ENV/JM/TG(2014)17. Auf Anfrage erhältlich.

(40) Morita, T., M. Honma, K. Morikawa (2012), Effect of reducing the top concentration used in the in vitro chromosomal aberration test in CHL cells on the evaluation of industrial chemical genotoxicity, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Bd. 741/1-2, 32-56.

(41) Brookmire, L., J.J. Chen, D.D. Levy (2013), Evaluation of the Highest Concentrations Used in the In Vitro Chromosome Aberrations Assay, Environmental and Molecular Muagenesis, Bd. 54/1, 36-43.

(42) EPA, Office of Chemical Safety and Pollution Prevention (2011), Chemical Substances of Unknown or Variable Composition, Complex Reaction Products and Biological Materials: UVCB Substances, http://www.epa.gov/opptintr/newchems/pubs/uvcb.txt.

(43) USFDA (2012), International Conference on Harmonisation (ICH) Guidance S2 (R1) on Genotoxicity Testing and Data Interpretation for Pharmaceuticals Intended For Human Use. Abrufbar unter: https://federalregister.gov/a/2012-13774.

(44) OECD (2014), Statistical analysis supporting the revision of the genotoxicity Test Guidelines, OECD Environment, Health and Safety Publications (EHS), Series on Testing and Assessment, Nr. 198, OECD Publishing, Paris.

(45) ISCN (2013), An International System for Human Cytogenetic Nomenclature, Schaffer, L.G., J. MacGowan-Gordon, M. Schmid (Herausgeber), Karger Publishers Inc., Connecticut.

(46) Scott, D. et al. (1990), Metaphase chromosome aberration assays in vitro, in Basic Mutagenicity Tests: UKEMS Recommended Procedures, Kirkland, D.J. (Herausgeber), Cambridge University Press, Cambridge, 62-86.

(47) Hayashi, M. et al. (2011), Compilation and use of genetic toxicity historical control Data, Mutation Research, Bd. 723/2, 87-90.

(48) Ryan, T. P. (2000), Statistical Methods for Quality Improvement, Zweite Ausgabe, John Wiley and Sons, New York.

(49) Fleiss, J. L., B. Levin, M.C. Paik (2003), Statistical Methods for Rates and Proportions, Dritte Ausgabe, John Wiley & Sons, New York.

(50) Galloway, S.M. et al. (1987), Chromosome aberration and sister chromatid exchanges in Chinese hamster ovary cells: Evaluation of 108 chemicals, Environmental and Molecular Mutagenesis, Bd. 10/Ergänz. 10, 1-175.

(51) Richardson, C. et al. (1989), Analysis of Data from In Vitro Cytogenetic Assays, in Statistical Evaluation of Mutagenicity Test Data, Kirkland, D.J. (Herausgeber), Cambridge University Press, Cambridge, 141-154.

(52) Warr, T.J., E.M. Parry, J.M. Parry (1993), A comparison of two in vitro mammalian cell cytogenetic assays for the detection of mitotic aneuploidy using 10 known or suspected aneugens, Mutation Research, Bd. 287/1, 29-46.

(53) Locke-Huhle, C. (1983), Endoreduplication in Chinese hamster cells during alpha-radiation induced G2 arrest, Mutation Research, Bd. 119/3, 403-413.

(54) Huang, Y., C. Change, J.E. Trosko (1983), Aphidicolin - induced endoreduplication in Chinese hamster cells, Cancer Research, Bd. 43/3, 1362-1364.

(55) Soper, K.A., S.M. Galloway (1994), Cytotoxicity measurement in in vitro chromosome aberration test and micronucleus test, Mutation Research, Bd. 312, 139-149.

.

DefinitionenAnlage 1

Definitionen

Aneuploidie: Abweichung von der normalen diploiden (oder haploiden) Chromosomenzahl durch ein einziges Chromosom oder mehr, nicht aber durch einen ganzen (oder mehrere) Chromosomensatz/-sätze (Polyploidie).

Apoptose: programmierter Zelltod, der durch eine Reihe von Schritten charakterisiert ist, an deren Ende ein Schrumpfen von Zellen zu membrangebundenen Partikeln steht, die schließlich durch Phagozytose oder Shedding abgebaut werden.

Chemikalie: ein Stoff oder ein Gemisch.

Chromatidbruch: Diskontinuität in einem einzelnen Chromatid mit eindeutiger Dislokation eines der Bruchstücke.

Chromatid-Gap: nicht gefärbter Bereich (achromatische Läsion) eines einzelnen Chromatids mit minimaler Dislokation eines der Bruchstücke.

Chromatidentypaberration: strukturelle Chromsomenanomalie, gekennzeichnet durch Bruch einzelner Chromatiden oder Bruch und Reunion zwischen Chromatiden.

Chromosomentypaberration: strukturelle Chromosomenanomalie, gekennzeichnet durch Bruch oder Bruch und Reunion beider Chromatiden an gleicher Position.

Endoreduplikation: Prozess, bei dem der Kern nach einer S-Phase der DNA-Replikation keine Mitose durchläuft, sondern in eine weitere S-Phase eintritt. Das Ergebnis sind Chromosomen mit 4, 8, 16, ... Chromatiden.

Genotoxisch: allgemeiner Begriff, der alle Typen von DNA- oder Chromosomenschädigungen umfasst, einschließlich Brüchen, Deletionen, Addukten, Nukleotidmodifikationen und -verknüpfungen, Rearrangements, Genmutationen, Chromosomenaberrationen sowie Aneuploidie. Nicht alle genotoxischen Effekte führen zu Mutationen oder stabilen Chromosomenschäden.

Klastogen: Chemikalie, die strukturelle Chromosomenaberrationen in Zellpopulationen oder eukaryontischen Organismen auslöst.

Konzentrationen: beziehen sich auf Endkonzentrationen der Prüfchemikalie im Kulturmedium.

Lösungsmittelkontrolle: allgemeiner Begriff zur Bezeichnung der Kontrollkulturen, die nur mit dem Lösungsmittel behandelt werden, das verwendet wird, um die Prüfchemikalie zu lösen.

Mitose: Teilung des Zellkerns, die in der Regel in Prophase, Prometaphase, Metaphase, Anaphase und Telophase gegliedert ist.

Mitoseindex (MI): Anteil der Zellen einer Zellpopulation, die sich zum Beobachtungszeitpunkt in Metaphase befinden; zugleich Hinweis auf den Grad der Zellproliferation in dieser Population.

Mutagen: Auslöser einer Erbgutveränderung der DNA-Basenpaarsequenz(en) in Genen oder in der Chromosomenstruktur (Chromosomenaberrationen).

Numerische Aberration: Abweichung der Chromosomenzahl vom Normalwert, der für die verwendeten Zellen charakteristisch ist.

p53-Status: Das p53-Protein ist an der Regulierung des Zellzyklus, Apoptose und DNA-Reparatur beteiligt. Zellen, denen ein funktionales p53-Protein fehlt und die nicht in der Lage sind, den Zellzyklus aufzuhalten oder beschädigte Zellen über Apoptose oder andere Mechanismen (z.B. Einleitung einer DNA-Reparatur) im Zusammenhang mit Aufgaben des p53-Proteins als Reaktion auf DNA-Schäden zu beseitigen, sollten theoretisch eher zu Genmutationen oder Chromosomenaberrationen neigen.

Polyploidie: zahlenmäßige Chromosomenaberrationen in Zellen oder Organismen, von denen ein oder mehrere ganze Chromosomensätze betroffen sind, im Gegensatz zur Aneuploidie, bei der nur ein oder mehrere einzelne Chromosomen betroffen sind.

Prüfchemikalie: Stoff oder Gemisch, der bzw. das nach dieser Prüfmethode getestet wird.

Relative Erhöhung der Zellzahl (RICC): zahlenmäßige Zunahme von Zellen in Kulturen, die mit der Chemikalie behandelt sind, verglichen mit der Zunahme in nicht behandelten Kulturen, ausgedrückt als Prozentanteil.

Relative Populationsverdopplung (RPD): Zunahme der Anzahl an Populationsverdopplungen in Kulturen, die mit der Chemikalie behandelt sind, verglichen mit der Zunahme in nicht behandelten Kulturen, ausgedrückt als Prozentanteil.

S9-Leberfraktion: Überstand des Leberhomogenats nach Zentrifugieren bei 9.000g, d. h. Rohleberextrakt.

S9-Gemisch: Gemisch aus der S9-Leberfraktion und für die metabolische Enzymaktivität notwendigen Ko-Faktoren.

Strukturelle Aberration: Veränderung der Chromosomenstruktur, nachweisbar durch mikroskopische Untersuchung des Metaphase-Stadiums der Zellteilung, äußert sich in Form von Deletionen und Fragmenten, intrachromosomalen oder reziproken Translokationen.

Unbehandelte Kontrollen: Kulturen, die nicht behandelt werden (d. h. weder mit der Prüfchemikalie noch mit Lösungsmittel), jedoch gleichzeitig in gleicher Weise aufgearbeitet werden wie die Kulturen, die mit der Prüfchemikalie behandelt werden.

Zellproliferation: Zunahme der Anzahl von Zellen als Ergebnis der mitotischen Zellteilung.

Zytotoxizität: Für die Zwecke der unter diese Prüfmethode fallenden Versuche, bei denen Zelllinien zum Einsatz kommen, bezeichnet Zytotoxizität eine Verringerung der relativen Populationsverdopplung (RPD) bzw. eine relative Erhöhung der Zellzahl (RICC) der behandelten Zellen, verglichen mit der Negativkontrolle (siehe Nummer 17 und Anlage 2). Für die Zwecke der unter dieser Prüfmethode fallenden Versuche, bei denen Primärkulturen von Lymphozyten zum Einsatz kommen, bezeichnet Zytotoxizität eine Verringerung des Mitoseindex (MI) der behandelten Zellen, verglichen mit der Negativkontrolle (siehe Nummer 18 und Anlage 2).

.

Formeln zur Bewertung der ZytotoxizitätAnlage 2

Mitoseindex (MI):

Zahl der mitotischen Zellen
MI(%) =



x 100
Gesamtzahl ausgewerteter Zellen

Die relative Erhöhung der Zellzahl (RICC) oder die relative Populationsverdopplung (RPD) wird empfohlen, da bei beiden der Anteil der Zellpopulation berücksichtigt wird, der eine Teilung durchlaufen hat.

(zahlenmäßige Zunahme von Zellen in behandelten Kulturen(Ende-Beginn))
RICC(%) =



x 100
(zahlenmäßige Zunahme von Zellen in Kontrollkulturen(Ende)Beginn))
(Anzahlt von Populationsverdoppelungen in behandelten Kulturen)
RPD(%)



x 100
(Anzahl von Populationsverdoppelungen in Kontrollkulturen)

Dabei gilt:

Populationsverdopplung = [log ((Zellzahl nach Behandlung ÷ Anfängliche Zellzahl)] ÷ log 2

Beispielsweise deutet eine RICC oder eine RPD von 53 % auf eine Zytotoxizität/Zytostase von 47 % hin, und eine anhand des MI gemessene Zytotoxizität/Zytostase von 55 % bedeutet, dass der tatsächliche MI zu 45 % außer Kontrolle ist.

In jedem Fall sollte die Größe der Zellpopulation vor der Behandlung ermittelt werden; Gleiches gilt für behandelte Kulturen und Negativkontrollkulturen.

Wenngleich der RCC-Wert (d. h. die in behandelten Kulturen/Zellzahl in Kontrollkulturen) in der Vergangenheit als Bestimmungsgröße für die Zytotoxizität herangezogen wurde, wird er nicht mehr empfohlen, da er zu einer Unterschätzung der Toxizität führen kann.

Bei den Negativkontrollkulturen sollte die Populationsverdopplung der Anforderung gerecht werden, dass Zellprobenahmen nach der Behandlung zu einem Zeitpunkt erfolgen müssen, der etwa der 1,5-fachen Dauer des normalen Zellzyklus entspricht, und der Mitoseindex sollte so hoch liegen, dass man eine ausreichend hohe Zellzahl erhält, die die Mitose erreicht, und zuverlässig mit einer 50 %igen Verringerung kalkulieren kann.

B.11 Test auf Chromosomenaberrationen in Knochenmarkzellen von Säugetieren 17

Einleitung

Diese Prüfmethode entspricht der OECD-Prüfrichtlinie 475 (2016). Sie ist Teil einer Serie von Prüfmethoden zur genetischen Toxikologie. Es wurde ein OECD-Dokument erstellt, das kurz gefasste und hilfreiche Informationen zu Untersuchungen zur genetischen Toxikologie sowie eine Übersicht über die jüngsten Änderungen dieser Prüfrichtlinien enthält (1).

Der In-vivo-Test auf Chromosomenaberrationen in Knochenmarkzellen von Säugetieren ist vor allem für die Bewertung der Genotoxizität relevant, da trotz artenspezifischer Unterschiede bestimmte Faktoren den In-vivo-Stoffwechsel, die Pharmakokinetik und die DNA-Reparaturprozesse beeinflussen und zu den Reaktionen beitragen. Ein In-vivo-Versuch ist ferner hilfreich für weitere Untersuchungen zu gentoxischen Wirkungen, die in einem In-vitro-System nachgewiesen wurden.

Der In-vivo-Test auf Chromosomenaberrationen in Säugetierzellen dient dem Nachweis von strukturellen Chromosomenaberrationen, die von Prüfchemikalien in Knochenmarkzellen von Säugetieren, in der Regel Nagetieren, ausgelöst werden (2) (3) (4) (5). Dabei ist zwischen strukturellen Chromosomentyp- und strukturellen Chromatidentypaberrationen zu unterscheiden. Bei der Mehrzahl der auf gentoxischen Chemikalien beruhenden Mutagene sind die Aberrationen dem Chromatidentyp zuzuordnen, doch kommen auch Chromosomentypaberrationen vor. Chromosomenschäden und damit zusammenhängende Prozesse sind die Ursache für zahlreiche humangenetische Erkrankungen, und es gibt wesentliche Anhaltspunkte dafür, dass diese Schäden und Prozesse, wenn sie Veränderungen an Onkogenen und Tumorsuppressorgenen auslösen, an der Entstehung von Krebs beim Menschen und in Versuchssystemen beteiligt sind. Polyploidie (einschließlich Endoreduplikation) könnte bei In-vivo-Versuchen zum Nachweis von Chromosomenaberrationen entstehen. Eine Polyploidie an sich ist jedoch kein Hinweis auf ein aneugenisches Potenzial und weist möglicherweise nur auf Störungen des Zellzyklus oder Zytotoxizität hin. Dieser Test dient nicht der Messung der Aneuploidie, zu deren Nachweis ein In-vivo-Erythrozyten-Mikrokerntest bei Säugern (vgl. Kapitel B.12 dieses Anhangs) oder der In-vitro-Mikronukleustest an Säugetierzellen (vgl. Kapitel B.49 dieses Anhangs) empfohlen würden.

Für Definitionen der verwendeten Begriffe siehe Anlage 1.

Ausgangsüberlegungen

Bei dieser Prüfung werden routinemäßig Nagetiere eingesetzt, aber auch andere Arten können in einigen Fällen geeignet sein, sofern dies wissenschaftlich gerechtfertigt wird. Zielgewebe bei dieser Prüfung ist das Knochenmark, da es sich um ein gefäßreiches Gewebe mit einer Population rasch proliferierender Zellen handelt, die sich leicht isolieren und aufarbeiten lassen. Die Verwendung anderer Versuchstiere als Ratten und Mäuse sollte im Bericht wissenschaftlich begründet werden. Sofern andere Versuchstiere als Nagetiere verwendet werden, wird empfohlen, Chromosomenaberrationen in Knochenmarkzellen im Rahmen anderer geeigneter Toxizitätstests zu messen.

Soweit es Anhaltspunkte dafür gibt, dass die Prüfchemikalie(n) oder (ein) reaktive® Metabolit(en) das Zielgewebe nicht erreicht bzw. erreichen, ist dieser Test nicht geeignet.

Bevor die Prüfmethode auf ein Gemisch angewendet wird, um Daten für Regulierungszwecke zu generieren, sollte geprüft werden, ob, und falls ja, warum sie für diese Zwecke geeignete Ergebnisse liefert. Diese Überlegungen erübrigen sich, wenn die Durchführung von Tests für das betreffende Gemisch gesetzlich vorgeschrieben ist.

Prinzip der Prüfmethode

Die Prüfchemikalie wird den Tieren über einen geeigneten Expositionsweg verabreicht; letztere werden nach der Behandlung zu einem angemessenen Zeitpunkt human getötet. Vor der Tötung werden die Tiere mit einem Spindelgift (z.B. Colchicin oder Colcemid) behandelt. Anschließend werden aus den Knochenmarkzellen Chromosomen präpariert und angefärbt, und die Metaphasezellen werden auf Chromosomenaberrationen untersucht.

Überprüfung der Eignung des Labors

Eignungsprüfungen

Um ausreichende Erfahrung mit der Durchführung des Versuchs nachzuweisen, bevor er für routinemäßige Testungen angewendet wird, sollte das Labor seine Fähigkeit zur Reproduktion erwarteter Ergebnisse aus veröffentlichten Daten (z.B. (6)) über Chromosomenaberrationshäufigkeiten mit mindestens zwei Positivkontrollchemikalien (einschließlich durch geringe Dosen positiver Kontrollen ausgelöste schwache Reaktionen), wie in Tabelle 1 aufgelistet, und mit kompatiblen Vehikel-/Lösungsmittelkontrollen demonstriert haben (siehe Nummer 22). In diesen Versuchen sollten Dosierungen verwendet werden, mit denen reproduzierbare und dosisabhängige Zunahmen erzielt werden und die die Empfindlichkeit und dynamische Bandbreite des Versuchssystems im untersuchten Gewebe (Knochenmark) demonstrieren, wobei nach der die im Labor normalerweise angewandten Auswertungsmethode vorgegangen werden sollte. Diese Anforderung gilt nicht für erfahrene Laboratorien, d. h. für Laboratorien, die über eine historische Datenbank im Sinne der Nummern 10-14 verfügen.

Historische Kontrolldaten

Im Rahmen der Eignungsprüfungen sollte das Labor Folgendes nachweisen:

Beim erstmaligen Erwerb von Daten zur Verteilung einer historischen Negativkontrolle sollten gleichzeitige Negativkontrollen mit veröffentlichten Kontrolldaten übereinstimmen, soweit solche vorhanden sind. Kommen weitere Versuchsdaten zur Verteilung der historischen Kontrollen hinzu, sollten gleichzeitige Negativkontrollen idealerweise innerhalb der 95 %-Kontrollgrenze dieser Verteilung liegen. Die Datenbank des Labors für historische Negativkontrollen sollte statistisch robuste Werte enthalten, die gewährleisten, dass das Labor in der Lage ist, die Verteilung seiner Negativkontrolldaten zu bewerten. Nach der Literatur reicht möglicherweise ein Minimum von 10 Versuchen aus, doch wird empfohlen, unter vergleichbaren Versuchsbedingungen mindestens 20 Versuche durchzuführen. Laboratorien sollten Qualitätskontrollverfahren wie Qualitätsregelkarten (z.B. C-Karten oder X-Bar-Karten (7)) anwenden, um zu ermitteln, wie variabel ihre Daten sind, und um nachzuweisen, dass die Methodik in ihrem Labor "unter Kontrolle" ist. Für weitere Empfehlungen zu Aufbau und Verwendung historischer Datensammlungen (d. h. Kriterien für die Aufnahme und den Ausschluss von Daten in bzw. aus historischen Datensammlungen und die Akzeptanzkriterien für einen bestimmten Versuch) siehe Literaturhinweise (8).

Soweit das Labor während der Eignungsprüfungen (siehe Nummer 9) nicht genügend Versuche abschließt, um eine statistisch robuste Verteilung der Negativkontrollen zu demonstrieren (siehe Punkt 11), kann die Verteilung auch während der ersten routinemäßigen Tests erstellt werden. Diese Vorgehensweise sollte sich an den Literaturempfehlungen orientieren (8), und die bei diesen Versuchen erzielten Negativkontrollergebnisse sollten mit veröffentlichten Negativkontrolldaten übereinstimmen.

Etwaige Änderungen am Versuchsprotokoll sollten hinsichtlich ihrer Auswirkungen auf die resultierenden Daten geprüft werden, die mit den bereits vorhandenen Labordaten über historische Kontrollen übereinstimmen müssen. Nur bei größeren Unstimmigkeiten sollte eine neue Datenbank für historische Kontrollen erstellt werden, soweit eine fachkundige Beurteilung ergibt, dass eine Abweichung von der vorherigen Verteilung besteht (siehe Nummer 11). Während der Neuerstellung muss für die Durchführung eines aktuellen Versuchs ggfs. keine vollständige Datenbank mit Negativkontrollen vorhanden sein, vorausgesetzt, dass Labor kann nachweisen, dass seine Werte aus gleichzeitigen Negativkontrollen entweder mit seiner vorangegangenen Datenbank oder mit den entsprechenden veröffentlichten Daten übereinstimmen.

Daten über Negativkontrollen sollten das Vorkommen struktureller Chromosomenaberrationen (ohne Gaps) bei jedem Tier umfassen. Gleichzeitige Negativkontrollen sollten idealerweise innerhalb der 95 %-Kontrollgrenzen der gewählten Verteilung in der Datenbank des Labors für historische Negativkontrollen liegen. Sofern Daten zu gleichzeitigen Negativkontrollen außerhalb der 95 %-Kontrollgrenzen liegen, ist es zulässig, sie in die historische Kontrollverteilung aufzunehmen, solange es sich bei den Daten nicht um "extreme Ausreißer"handelt und nachgewiesen werden kann, dass das Versuchssystem "unter Kontrolle" ist (siehe Nummer 11) und kein Hinweis auf technisches oder menschliches Versagen vorliegt.

Beschreibung der Prüfmethode

Vorbereitungen

Auswahl der Tierart

Es sollten junge, gesunde und geschlechtsreife Tiere der üblichen Labortierstämme zum Einsatz kommen. Gewöhnlich werden Ratten verwendet, doch kommen auch Mäuse in Frage. Es können auch andere geeignete Säugetierarten verwendet werden, sofern dies im Bericht wissenschaftlich begründet wird.

Haltungs- und Fütterungsbedingungen

Bei Nagern sollte die Temperatur im Versuchstierraum 221 °C (± 31 °C) betragen. Die relative Luftfeuchte sollte vorzugsweise bei 50 bis 60 % liegen, mindestens aber 40 % betragen und außer bei Reinigung des Raumes 70 % nicht übersteigen. Der Raum sollte künstlich beleuchtet sein, mit Hell-/Dunkelphasen im 12-Stunden-Rhythmus. An die Versuchstiere kann herkömmliches Laborfutter verfüttert werden, wobei eine unbegrenzte Trinkwasserversorgung zu gewährleisten ist. Die Wahl des Futters kann dadurch beeinflusst werden, dass es sich für die Beimischung einer Prüfchemikalie eignen muss, wenn diese über das Futter verabreicht wird. Nagetiere können in kleinen Gruppen von Tieren gleichen Geschlechts und der gleichen Behandlungsgruppen untergebracht werden (maximal fünf pro Käfig), sofern kein aggressives Verhalten zu erwarten ist, vorzugsweise in Käfigen mit festem Boden und entsprechender Ausgestaltung des Lebensumfelds. Die Tiere dürfen nur dann einzeln untergebracht werden, wenn dies wissenschaftlich gerechtfertigt ist.

Vorbereitung der Tiere

In der Regel werden junge, gesunde und geschlechtsreife Tiere verwendet (bei Nagetieren vorzugsweise Tiere, die zu Behandlungsbeginn 6 bis 10 Wochen alt sind, wobei etwas ältere Tiere auch zulässig sind), die den Kontroll- und Behandlungsgruppen nach dem Zufallsprinzip zuzuordnen sind. Die Tiere werden nach einer humanen, minimalinvasiven Methode (z.B. durch Anbringen von Ringen, Kennmarken, Mikrochips oder biometrisch, nicht jedoch durch Kupieren der Ohren oder Zehen) einzeln gekennzeichnet. Die Tiere werden über einen Zeitraum von mindestens fünf Tagen unter Laborbedingungen eingewöhnt. Die Käfige sind so anzuordnen, dass etwaige standortbedingte Auswirkungen minimal sind. Kreuzkontaminationen zwischen Positivkontrolle und Prüfchemikalie sind zu vermeiden. Zu Beginn der Studie sollten die Körpergewichtsunterschiede zwischen den behandelten Tiere möglichst gering sein und um nicht mehr als ± 20 % vom Durchschnittsgewicht des jeweiligen Geschlechts abweichen.

Vorbereitung der Dosierung

Feste Prüfchemikalien sollten vor ihrer Verabreichung an die Tiere in geeigneten Lösungsmitteln oder Vehikeln gelöst oder suspendiert oder dem Futter oder Trinkwasser beigemischt werden. Flüssige Prüfchemikalien können direkt verabreicht oder zuvor verdünnt werden. Bei Exposition durch Inhalation können die Prüfchemikalien je nach physikalisch-chemischen Eigenschaften als Gase, Dämpfe oder festes/flüssiges Aerosol verabreicht werden. Es sind frische Zubereitungen der Prüfchemikalie zu verwenden, es sei denn, deren die Stabilität bei Lagerung ist erwiesen und die geeigneten Lagerbedingungen sind vorgegeben.

Lösungsmittel/Vehikel

Das Lösungsmittel/Vehikel sollte bei den gewählten Dosisstufen keine toxischen Wirkungen hervorrufen und nicht in Verdacht stehen, mit den Prüfchemikalien eine chemische Reaktion einzugehen. Werden keine gängigen Lösungsmittel/Vehikel verwendet, so sind Referenzdaten über ihre Kompatibilität beizubringen. Es empfiehlt sich, wann immer möglich zunächst die Verwendung eines wässrigen Lösungsmittels/Vehikels in Erwägung zu ziehen. Beispiele für gängige, kompatible Lösungsmittel/Vehikel sind Wasser, physiologische Kochsalzlösung, Methylcelluloselösung, Carboxymethylcellulose-Natriumsalzlösung, Olivenöl und Maisöl. Liegen keine historischen oder veröffentlichten Kontrolldaten vor, aus denen hervorgeht, dass keine strukturellen Aberrationen oder anderen schädlichen Wirkungen von einem gewählten, nicht gängigen Lösungsmittel/Vehikel ausgehen, sollte ein Vorversuch durchgeführt werden, der die Eignung des Lösungsmittels/Vehikels belegt.

Kontrollen

Positivkontrollen

Jeder Versuch sollte eine Gruppe von Tieren umfassen, die mit einer Positivkontrollchemikalie behandelt wurden. Darauf kann möglicherweise verzichtet werden, wenn das Prüflabor seine Eignung zur Durchführung des Tests demonstriert und eine Serie historischer Positivkontrollen nachgewiesen hat. Umfasst der Versuch keine gleichzeitige Positivkontrolle, sollten Auswertungskontrollen (fixierte und nicht angefärbte Objektträger) einbezogen werden. Dazu eignen sich Referenzproben, die im Rahmen eines separaten Positivkontrollversuchs, der in dem Labor, das den Versuch durchführt, in regelmäßigen Zeitabständen (z.B. alle 6 bis 18 Monate) durchgeführt wird (z.B. bei Eignungsprüfungen und danach ggf. auf regelmäßiger Basis), entnommen und gelagert wurden.

Positivkontrollchemikalien sollten zuverlässig bewirken, dass die Häufigkeit der Zellen mit Chromosomenaberrationen gemessen an der spontan entstehenden Zellmenge nachweislich zunimmt. Positivkontrolldosen sollten so gewählt werden, dass die Wirkungen eindeutig sind, aber beim Ablesen nicht sofort die Identität der kodierten Proben erkennen lassen. Es ist vertretbar, dass die Positivkontrolle im Rahmen eines anderen Behandlungsplans auf anderem Wege als die Prüfchemikalie verabreicht wird und nur eine einzige Probenahme erfolgt. Ggf. könnte eine zusätzliche Positivkontrolle verwendet werden, die derselben chemischen Klasse angehört wie die Prüfchemikalie. Für Beispiele für Positivkontrollchemikalien siehe Tabelle 1.

Tabelle 1 Beispiele für Positivkontrollchemikalien

ChemikalieCAS-Nr.
Ethylmethansulfonat62-50-0
Methylmethansulfonat66-27-3
Ethylnitrosoharnstoff759-73-9
Mitomycin C50-07-7
Cyclophosphamid(monohydrat)50-18-0 (6055-19-2)
Triethylenmelamin51-18-3

Negativkontrollen

Tiere der Negativkontrolle sollten bei jeder Probenahme berücksichtigt und genau wie die Behandlungsgruppen behandelt werden, außer dass ihnen keine Prüfchemikalie verabreicht wird. Soweit zur Verabreichung der Prüfchemikalie ein Lösungsmittel/Vehikel verwendet wird, sollte die auch Kontrollgruppe dieses Lösungsmittel/Vehikel erhalten. Demonstrieren jedoch historische Negativkontrolldaten bei jeder Probenahme für das betreffende Prüflabor übereinstimmende Werte zur Variabilität der Tiere und Häufigkeit der Zellen mit Chromosomenaberrationen, so ist für die Negativkontrollen möglicherweise nur eine einzige Probenahme erforderlich. Wird bei den Negativkontrollen nur eine einzige Probe entnommen, so sollte dies zum ersten Probenahmezeitpunkt erfolgen.

Verfahren

Anzahl und Geschlecht der Tiere

Die Mikrokernreaktion verläuft bei männlichen und weiblichen Tieren in der Regel ähnlich (9), und es ist davon auszugehen, dass dies auch für strukturelle Chromosomenaberrationen gilt, sodass die meisten Studien unabhängig vom Geschlecht durchgeführt werden können. Daten, die nennenswerte Unterschiede zwischen männlichen und weiblichen Tieren demonstrieren (z.B. Unterschiede bei der systemischen Toxizität, beim Stoffwechsel, bei der Bioverfügbarkeit, bei der Knochenmarktoxizität usw., einschließlich unter anderem einer Dosisfindungsstudie), würden die Verwendung von Tieren beider Geschlechter nahe legen. In diesem Fall kann es angebracht sein, eine Studie an Tieren beider Geschlechter durchzuführen, z.B. im Rahmen einer Toxizitätsstudie mit wiederholter Verabreichung. Bei Verwendung beider Geschlechter könnte die Anwendung des faktoriellen Modells zweckdienlich sein. Für Einzelheiten zur Analyse der Daten nach diesem Modell siehe Anlage 2.

Zu Beginn der Studie sollten die Gruppengrößen so festgelegt werden, dass jede Gruppe mindestens 5 analysierbare Tiere eines Geschlechts oder beider Geschlechter, sofern beide Geschlechter einbezogen werden, umfasst. Sollte es sich beim Menschen um eine geschlechtsspezifische Exposition handeln, z.B. wie dies bei bestimmten Pharmazeutika der Fall ist, ist der Versuch am Tier ebenfalls geschlechtsspezifisch durchzuführen. Richtwert für eine typische Versuchstiermenge: Für eine Knochenmarkstudie mit zwei Probenahmezeitpunkten, drei Dosisgruppen und einer gleichzeitigen Negativkontrollgruppe zuzüglich einer Positivkontrollgruppe (wobei jede Gruppe aus fünf Tieren jedes Geschlechts besteht) wären maximal 45 Versuchstiere erforderlich.

Dosisstufen

Wird vorab eine Dosisfindungsstudie durchgeführt, da keine geeigneten Daten zur Dosisauswahl verfügbar sind, sollte diese im selben Labor unter Verwendung derselben Spezies und desselben Stamms, Geschlechts und Behandlungsverfahrens wie beim Hauptversuch stattfinden (10). Ziel der Studie sollte sein, die maximal verträgliche Dosis (MTD) zu ermitteln, die definiert ist als die Höchstdosis, die, bezogen auf den Versuchszeitraum, keine Anzeichen von Toxizität hervorruft, die die Studie begrenzen würden (z.B. Rückgang des Körpergewichts oder Zytotoxizität des hämatopoetischen Systems), ausgenommen Tod oder Anzeichen von Schmerzen und Leiden, die eine humane Tötung erforderlich machen würden (11).

Die Höchstdosis kann ferner als die Dosis definiert werden, die bestimmte Anzeichen toxischer Wirkungen auf das Knochenmark hervorruft.

Chemikalien, die zu einer Sättigung der toxikokinetischen Eigenschaften führen oder Entgiftungsprozesse einleiten, die nach einer Langzeitbehandlung möglicherweise zu einem Rückgang der Exposition führen, können von den Dosierungskriterien ausgenommen werden und sollten auf Einzelfallbasis evaluiert werden.

Um Dosis-Wirkungs-Informationen zu erhalten, sollte eine vollständige Studie eine Negativkontrollgruppe und mindestens drei Dosisstufen (Dosis x 2, jedoch maximal x 4) vorsehen. Ruft die Prüfchemikalie in einer Dosisfindungsstudie oder nach bereits vorhandenen Daten keine Toxizität hervor, so sollte die Höchstdosis für eine Einzelgabe 2.000 mg/kg Körpergewicht betragen. Ruft die Prüfchemikalie jedoch Toxizität hervor, sollte die MTD die höchste verabreichte Dosis sein, und die Dosisstufen sollten vorzugsweise einen Bereich zwischen Höchstdosis und der Dosis abdecken, die wenig oder keine Toxizität erzeugt. Wenn für alle untersuchten Dosisstufen Toxizität im Zielgewebe (Knochenmark) beobachtet wird, sind weitere Untersuchungen bei nichttoxischen Dosisstufen ratsam. Studien zur genaueren Charakterisierung der quantitativen Dosis-Wirkungs-Informationen erfordern möglicherweise weitere Dosisgruppen. Bei bestimmten Arten von Prüfchemikalien (z.B. Humanpharmazeutika), für die spezielle Anforderungen gelten, können diese Grenzen variieren.

Limit-Test

Weisen Dosisfindungsstudien oder bereits vorhandene Daten für verwandten Tierstämme darauf hin, dass eine Behandlung zumindest mit der Limit-Dosis (siehe Beschreibung unten) keine feststellbaren toxischen Wirkungen (und auch keinen Rückgang der Proliferation des Knochenmarks oder andere Anzeichen für toxische Wirkungen im Zielgewebe) verursacht, und ist auf Basis von In-vitro-Studien zur Untersuchung der Genotoxizität oder von Daten über strukturell verwandte Chemikalien keine Genotoxizität zu erwarten, so ist möglicherweise keine umfassende Studie mit drei Dosisstufen erforderlich, sofern nachgewiesen wurde, dass die Prüfchemikalie(n) das Zielgewebe (Knochenmark) erreicht bzw. erreichen. In solchen Fällen könnte eine der Limit-Dosis entsprechende Einzeldosis ausreichen. Bei einem Behandlungszeitraum von > 14 Tagen beträgt die Limit-Dosis 1.000 mg/kg Körpergewicht/Tag. Bei einem Behandlungszeitraum von 14 oder weniger Tagen beträgt die Limit-Dosis 2.000 mg/kg Körpergewicht/Tag.

Verabreichung

Bei der Versuchsplanung ist der antizipierte Verabreichungsweg beim Menschen zu berücksichtigen. Routen wie die Aufnahme über die Nahrung oder das Trinkwasser, die topische, subkutane, intravenöse, orale (Magensonde), intratracheale Verabreichung, die Inhalation oder die Implantation sind daher als wissenschaftlich gerechtfertigt zulässig. In jedem Fall sollte der Verabreichungsweg so gewählt werden, dass das (die) Zielgewebe angemessen exponiert werden. Eine intraperitoneale Injektion wird in der Regel nicht empfohlen, da diese nicht als Verabreichungsweg beim Menschen vorgesehen ist, und sollte nur mit entsprechender wissenschaftlicher Begründung angewandt werden. Sofern die Prüfchemikalie der Nahrung oder dem Trinkwasser beigemischt wird, insbesondere im Fall von Einzeldosierungen, ist darauf zu achten, dass ein ausreichender Zeitabstand zwischen der Nahrungsmittel-/Trinkwasseraufnahme und der Probenahme eingehalten wird, damit ein Nachweis der Wirkungen möglich ist (siehe Nummern 33-34). Die Höchstmenge an Flüssigkeit, die jeweils über eine Magensonde verabreicht oder injiziert werden kann, hängt von der Größe des Versuchstiers ab. Das Volumen sollte im Normalfall 1 ml/100 g Körpergewicht nicht überschreiten, bei wässrigen Lösungen können aber auch 2 ml/100 g in Betracht gezogen werden. Werden größere Volumina verwendet, ist dies zu begründen. Mit Ausnahme von reizenden oder ätzenden Prüfchemikalien, die normalerweise bei höheren Konzentrationen gravierende Wirkungen zeigen, sollte die Variabilität der Prüfvolumina minimiert werden, indem die Konzentration angepasst wird, dass im Verhältnis zum Körpergewicht bei allen Dosisstufen ein konstantes Volumen verabreicht wird.

Behandlungsplan

Prüfchemikalien werden in der Regel auf einmal verabreicht. Die Gabe kann aber auch in Form von zwei oder mehreren Teilmengen erfolgen (am gleichen Tag im Abstand von nicht mehr als 2 bis 3 Stunden), wenn es sich um eine große Menge handelt. In diesen Fällen, oder wenn die Prüfchemikalie durch Inhalation verabreicht wird, sollte der Zeitpunkt der Probenahme auf Basis der letzten Dosisgabe oder des Zeitpunkts, an dem die Exposition beendet wurde, angesetzt werden.

Es liegen nur wenige Informationen darüber vor, ob sich ein Protokoll für wiederholte Verabreichung für diesen Versuch eignet. In Fällen, in denen es zweckmäßig erscheint, diesen Versuch in einen Toxizitätstest mit wiederholter Verabreichung einzubinden, ist ein Verlust von mitotischen Zellen mit beschädigten Chromosomen zu vermeiden, wozu es bei toxischen Dosierungen kommen kann. Eine solche Einbindung ist zulässig, wenn die höchste Dosis der Limit-Dosis entspricht oder größer ist (siehe Nummer 29) und eine Dosisgruppe für die Dauer des Behandlungszeitraums die Limit-Dosis erhält. Soll eine Einbindung in andere Studien erfolgen, sollte vorrangig der Mikrokerntest (Prüfmethode B.12) als In-vivo-Test für Chromosomenaberrationen gewählt werden.

Knochenmarkproben sollten an zwei verschiedenen Zeitpunkten im Anschluss an Einzelbehandlungen genommen werden. Bei Nagern sollte das erste Probenahmeintervall der Dauer von 1,5 normalen Zellzyklen (die in der Regel 12 bis 18 Stunden nach der Behandlung abgeschlossen sind) entsprechen. Da die für die Aufnahme und Metabolisierung der Prüfchemikalie(n) sowie für die Wirkung auf die Zellzykluskinetik benötigte Zeit den optimalen Zeitpunkt für die Feststellung von Chromosomenaberrationen beeinflussen kann, wird empfohlen, 24 Stunden nach der ersten Probenahme eine weitere Probenahme vorzunehmen. Bei der ersten Probenahme sollten alle Dosisgruppen behandelt, und es sollten Proben für die Analyse aufgearbeitet werden. Bei (einer) weiteren Probenahme(n) muss nur die Höchstdosis verabreicht werden. Werden Verabreichungsschemata gewählt, die über einen Tag hinausgehen, und ist dies wissenschaftlich begründet, sollte die Probenahme im Anschluss an die letzte Behandlung nach Ablauf eines Zeitraums erfolgen, der der l,5-fachen Dauer des normalen Zellzyklus entspricht.

Nach der Behandlung und vor der Aufarbeitung der Proben erhalten die Versuchstiere eine intraperitoneale Injektion mit einer geeigneten Dosis eines Spindelgifts (z.B. Colcemid oder Colchicin), und nach einem angemessenen Zeitraum im Anschluss daran erfolgt die Aufarbeitung. Bei Mäusen beträgt dieser Zeitraum etwa 3 bis 5 Stunden vor der Aufarbeitung und bei Ratten 2 bis 5 Stunden. Aus dem Knochenmark werden Zellen gewonnen, aufgequollen, fixiert und angefärbt und anschließend auf Chromosomenaberrationen untersucht (12).

Beobachtungen

Mindestens einmal täglich sollten allgemeine klinische Beobachtungen der Versuchstiere vorgenommen und vorzugsweise zum gleichen Zeitpunkt und unter Berücksichtigung des Zeitraums, in dem der Wirkungsgipfel nach Verabreichung der Dosis zu erwarten ist, protokolliert werden. Mindestens zweimal täglich während der Verabreichungszeit sind alle Tiere auf Morbidität und Mortalität zu untersuchen. Alle Tiere sollten zu Studienbeginn, mindestens einmal pro Woche bei Studien mit wiederholter Verabreichung sowie bei humaner Tötung gewogen werden. In Studien von mindestens einwöchiger Dauer sollten mindestens wöchentlich Messungen der Futteraufnahme vorgenommen werden. Wenn die Prüfchemikalie über das Trinkwasser verabreicht wird, sollte auch die Wasseraufnahme bei jedem Wasserwechsel und mindestens einmal wöchentlich gemessen werden. Tiere mit Anzeichen von übermäßiger, jedoch nicht tödlich wirkender Toxizität sollten vor Ende des Prüfzeitraums human getötet werden (11).

Exposition des Zielgewebes

Zu (einem) geeigneten Zeitpunkt(en) sollte eine Blutprobe gezogen werden, um den Plasmaspiegel der Prüfchemikalien untersuchen zu können. Dadurch soll nachgewiesen werden, dass eine Exposition des Knochenmarks stattgefunden hat, wo dies gerechtfertigt erscheint und keine anderen Expositionsdaten vorhanden sind (siehe Nummer 44).

Knochenmark- und Chromosomenpräparate

Die Knochenmarkzellen werden in der Regel unmittelbar nach der humanen Tötung aus den Oberschenkel- oder Schienbeinknochen der Tiere gewonnen, mit hypotoner Lösung behandelt und fixiert. Die Zellen werden anschließend nach anerkannten Verfahren auf Objektträger aufgetropft und angefärbt (siehe (3) (12)).

Analyse

Alle Objektträger, einschließlich der Positiv- und Negativkontrollen, sollten vor der Analyse unabhängig kodiert und randomisiert werden, damit die Auswertung ohne Kenntnis der Behandlungsbedingungen erfolgt.

Bei allen behandelten Tieren (einschließlich der Positivkontrollen), unbehandelten oder mit einem Lösungsmittel/Vehikel behandelten Tieren der Negativkontrollgruppe ist der Mitoseindex als Gradmesser der Zytotoxizität in mindestens 1.000 Zellen pro Tier zu bestimmen.

Pro Tier sollten mindestens 200 Metaphasen auf strukturelle Chromsomenaberrationen, mit und ohne Gaps, analysiert werden (6). Wenn jedoch aus den historischen Negativkontrolldaten hervorgeht, dass die durchschnittliche Hintergrundhäufigkeit für strukturelle Chromsomenaberrationen im Prüflabor < 1 % beträgt, sollte eine Auswertung weiterer Zellen in Erwägung gezogen werden. Chromatidentyp- und Chromosomentypaberrationen sollten gesondert erfasst und Subtypen zugeordnet werden (Brüche, Austausche). Die Laborpraxis sollte gewährleisten, dass die Analyse von Chromosomenaberrationen von gut ausgebildeten Labortechnikern vorgenommen und ggf. einer Peer-Review unterzogen wird. Da es bei der Präparation der Objektträger häufig zum Bruch eines Teils der Metaphasezellen und zum Verlust von Chromosomen kommt, sollten die ausgewerteten Zellen eine Zentromerzahl enthalten, die der Zahl 2n ± 2 entspricht, wobei n die haploide Chromosomenzahl für diese Spezie ist.

Daten und Berichterstattung

Behandlung der Ergebnisse

Die Daten für die einzelnen Tiere sollten tabellarisch erfasst werden. Für jedes Tier sollten der Mitoseindex, die Anzahl der bewerteten Metaphasezellen, die Zahl der Aberrationen pro Metaphasezelle und der Anteil der Zellen mit strukturellen Chromosomenaberrationen angegeben werden. Für die Versuchs- und Kontrollgruppen sollten die unterschiedlichen Typen struktureller Chromsomenaberrationen unter Angabe ihrer Anzahl und Häufigkeit aufgeführt werden. Gaps sowie polyploide Zellen und Zellen mit endoreduplizierten Chromosomen werden getrennt erfasst. Die Häufigkeit von Gaps ist anzugeben, wird in der Regel bei der Analyse der Gesamthäufigkeit der Aberrationen jedoch nicht berücksichtigt. Gibt es keine Anhaltspunkte für unterschiedliche Reaktionen der Geschlechter, so können die Daten für beide Geschlechter für die statistische Analyse zusammengefasst werden. Daten zur Toxizität und klinische Anzeichen bei Tieren sind ebenfalls anzugeben.

Gültigkeitskriterien

Die folgenden Kriterien entscheiden über die Gültigkeit des Versuchs:

  1. Die Aufnahme der gleichzeitigen Negativkontrolldaten in die Labordatenbank für historische Negativkontrollen ist zulässig (siehe Nummern 11-14);
  2. die gleichzeitigen Positivkontrollen oder Auswertungskontrollen sollten Reaktionen auslösen, die mit denen aus den historischen Positivkontrolldaten kompatibel sind und verglichen mit der Negativkontrolle eine statistisch signifikante Zunahme bewirken (siehe Nummern 20-21);
  3. es wurde die richtige Anzahl an Dosen und Zellen analysiert;
  4. die Kriterien für die Wahl der Höchstdosis stimmen mit den unter den Nummern 25-28 beschriebenen Kriterien überein.

Auswertung und Interpretation der Ergebnisse

Unter der Voraussetzung, dass alle Gültigkeitskriterien erfüllt sind, gilt eine Prüfchemikalie als eindeutig positiv, wenn

  1. mindestens eine der Behandlungsgruppen, verglichen mit der gleichzeitigen Negativkontrolle, eine statistisch signifikante Zunahme der Häufigkeit von Zellen mit strukturellen Chromsomenaberrationen (ohne Gaps) aufweist,
  2. diese Zunahme bei Bewertung nach einem geeigneten Trendtest bei mindestens einer Probenahme dosisabhängig ist und
  3. eines dieser Ergebnisse außerhalb der Verteilung der historischen Negativkontrolldaten liegt (z.B. auf einer Poisson-Verteilung beruhende Kontrollgrenzen von 95 %).

Wird zu einem bestimmten Probenahmezeitpunkt nur die Höchstdosis untersucht, so gilt eine Prüfchemikalie als eindeutig positiv, wenn, verglichen mit der gleichzeitigen Negativkontrolle, eine statistisch signifikante Zunahme vorliegt und die Ergebnisse außerhalb der Verteilung der historischen Negativkontrolldaten liegen (z.B. auf einer Poisson-Verteilung beruhende Kontrollgrenzen von 95 %). Empfehlungen zu geeigneten statistischen Methoden sind der Literatur zu entnehmen (13). Bei der Durchführung einer Dosis-Wirkungs-Analyse sollten mindestens drei behandelte Dosisgruppen analysiert werden. Bei statistischen Versuchen sollte das Tier Versuchseinheit sein. Positive Ergebnisse beim Chromosomenaberrationstest deuten darauf hin, dass eine Prüfchemikalie Chromosomenaberrationen im Knochenmark der getesteten Spezies auslöst.

Unter der Voraussetzung, dass alle Gültigkeitskriterien erfüllt sind, gilt eine Prüfchemikalie als eindeutig negativ, wenn unter allen getesteten Versuchsbedingungen

  1. keine der Behandlungsgruppen, verglichen mit der gleichzeitigen Negativkontrolle, eine statistisch signifikante Zunahme der Häufigkeit von Zellen mit strukturellen Chromsomenaberrationen (ohne Gaps) aufweist,
  2. bei Bewertung nach einem geeigneten Trendtest zu keinem Probenahmezeitpunkt eine dosisabhängige Zunahme festgestellt wird,
  3. alle Ergebnisse innerhalb der Verteilung der historischen Negativkontrolldaten liegen (z.B. auf einer Poisson-Verteilung beruhende Kontrollgrenzen von 95 %) und
  4. eine Exposition des Knochenmarks gegenüber der /den Prüfchemikalie(n) erfolgt ist.

Für Empfehlungen zu den am besten geeigneten statistischen Methoden siehe Literaturhinweis (13). Als Nachweis für eine Exposition des Knochenmarks gegenüber einer Prüfchemikalie kann auch ein Rückgang des Mitoseindex oder eine Untersuchung der Plasma- oder Blutspiegel der Prüfchemikalie(n) dienen. Bei intravenöser Verabreichung ist kein Expositionsnachweis erforderlich. Alternativ können ADME-Daten herangezogen werden, die in einer unabhängigen Studie unter Verwendung der gleichen Verabreichungswege und der gleichen Spezies gewonnen wurden, um nachzuweisen, dass eine Knochenmarkexposition stattgefunden hat. Negative Ergebnisse deuten darauf hin, dass die Prüfchemikalie unter den Versuchsbedingungen keine strukturellen Chromosomenaberrationen im Knochenmark der getesteten Spezies hervorruft.

Bei einer eindeutig positiven oder negativen Reaktion ist keine Verifizierung erforderlich.

In Fällen, in denen die Reaktion, wie oben beschrieben, weder eindeutig negativ noch eindeutig positiv ist, oder um die biologische Relevanz eines Ergebnisses zu untermauern (z.B. eine geringe oder grenzwertige Zunahme), sollten die Daten durch eine fachkundige Beurteilung und/oder anhand weiterer Untersuchungen bewertet werden. In einigen Fällen kann die Auswertung weiterer Zellen oder die Durchführung eines Wiederholungsversuchs, möglicherweise unter veränderten Versuchsbedingungen, hilfreich sein.

In seltenen Fällen erlaubt der Datensatz auch nach weiteren Untersuchungen keine definitive Aussage darüber, ob die Prüfchemikalie positive oder negative Ergebnisse zur Folge hat; in diesen Fällen wird die Studie als unschlüssig abgeschlossen.

Die Häufigkeit des Auftretens polyploider und endoreduplizierter Metaphasen gemessen an der Gesamtzahl der Metaphasen sollte getrennt erfasst werden. Eine zahlenmäßige Zunahme der polyploiden/endoreduplizierten Zellen deutet möglicherweise darauf hin, dass die Prüfchemikalie mitotische Prozesse zu hemmen und numerische Chromosomenaberrationen hervorzurufen vermag (siehe Abschnitt 3).

Prüfbericht

Der Prüfbericht sollte folgende Angaben enthalten:

Zusammenfassung

Prüfchemikalie:

Einkomponentige Substanz:

Mehrkomponentige Substanz, UVCB-Stoffe und Gemische:

Zubereitung der Prüfchemikalie:

Versuchstiere:

Prüfbedingungen:

Ergebnisse:

Diskussion der Ergebnisse.

Schlussfolgerung.

Referenzdokumente.

Literaturhinweise

(1) OECD (2016). Overview of the set of OECD Genetic Toxicology Test Guidelines and updates performed in 2014-2015. ENV Publications. Series on Testing and Assessment, No. 234, OECD, Paris.

(2) Adler, I.D. (1984), Cytogenetic Tests in Mammals, in Mutagenicity Testing: A Practical Approach, Venittand, S., J.M. Parry (eds.), IRL Press, Washington, DC, 275-306.

(3) Preston, R.J. et al. (1987), Mammalian in vivo cytogenetic assays. Analysis of chromosome aberrations in bone marrow cells, Mutation Research, Band 189/2, 157-165.

(4) Richold, M. et al. (1990), "In Vivo Cytogenetics Assays", in Basic Mutagenicity Tests, UKEMS Recommended Procedures. UKEMS Subcommittee on Guidelines for Mutagenicity Testing. Bericht. Überarbeiteter Teil I, Kirkland, D.J. (ed.), Cambridge University Press, Cambridge, 115-141.

(5) Tice, R.R. et al. (1994), Report from the working group on the in vivo mammalian bone marrow chromosomal aberration test, Mutation Research, Band 312/3, 305-312.

(6) Adler, I.D. et al. (1998), Recommendations for statistical designs of in vivo mutagenicity tests with regard to subsequent statistical analysis, Mutation Research/Genetic Toxicology and Environmental Mutagenesis, Band 417/1, 19-30.

(7) Ryan, T.P. (2000), Statistical Methods for Quality Improvement, 2nd ed., John Wiley and Sons, New York.

(8) Hayashi, M. et al. (2011), Compilation and use of genetic toxicity historical control data, Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Band 723/2, 87-90.

(9) Hayashi, M. et al. (1994), in vivo rodent erythrocyte micronucleus assay, Mutation Research/Environmental Mutagenesis and Related Subjects, Band 312/3, 293-304.

(10) Fielder, R.J. et al. (1992), Report of British Toxicology Society/UK Environmental Mutagen Society Working Group. Dose setting in in vivo mutagenicity assays, Mutagenesis, Band 7/5, 313-319.

(11) OECD (2000), Guidance Document on the Recognition, Assessment and Use of Clinical Signs as Humane Endpoints for Experimental Animals Used in Safety Evaluation, OECD Environment, Health and Safety Publications (EHS), Series on Testing and Assessment, No19, OECD Publishing, Paris.

(12) Pacchierotti, F., V. Stocchi (2013), Analysis of chromosome aberrations in somatic and germ cells of the mouse, Methods in Molecular Biology, Band 1044, 147-163.

(13) Lovell, D.P. et al. (1989), Statistical Analysis of in vivo Cytogenetic Assays, in Statistical Evaluation of Mutagenicity Test Data. UKEMS SubCommittee on Guidelines for Mutagenicity Testing, Bericht, Teil III, Kirkland, D.J. (ed.), Cambridge University Press, Cambridge, 184-232.

.

DefinitionenAnlage 1

Definitionen

Aneuploidie: jede Abweichung von der normalen diploiden (oder haploiden) Chromosomenzahl um ein oder mehrere Chromosomen, jedoch nicht um ganze Chromosomensätze (vgl. Polyploidie).

Chemikalie: ein Stoff oder ein Gemisch.

Chromatidentypaberration: strukturelle Chromsomenanomalie, gekennzeichnet durch Bruch einzelner Chromatiden oder Bruch und Reunion zwischen Chromatiden.

Chromosomentypaberration: strukturelle Chromosomenanomalie, gekennzeichnet durch Bruch oder Bruch und Reunion beider Chromatiden an gleicher Position.

Endoreduplikation: Prozess, bei dem der Kern nach einer S-Phase der DNA-Replikation keine Mitose durchläuft, sondern in eine weitere S-Phase eintritt. Das Ergebnis sind Chromosomen mit 4,8,16, ... Chromatiden.

Gap: achromatische Läsion von geringerer Breite als eine Chromatide mit minimaler Verlagerung der Chromatiden.

Mitoseindex: Anteil der Zellen einer Zellpopulation, die sich zum Beobachtungszeitpunkt in der Mitose befinden: Gradmesser für den Vermehrungsgrad dieser Population.

Numerische Aberration: Abweichung der Chromosomenzahl vom Normalwert, der für die verwendeten Tiere charakteristisch ist (Aneuploidie).

Polyploidie: numerische Chromosomenaberration, von der ein ganzer Chromosomensatz betroffen ist, im Gegensatz zu einer numerischen Abweichung in einem Teil des Chromosomensatzes (vgl. Aneuploidie).

Prüfchemikalie: ein Stoff oder ein Gemisch, der bzw. das nach dieser Prüfmethode getestet wird.

Strukturelle Chromosomenaberration: Veränderung der Chromosomenstruktur, nachweisbar durch mikroskopische Untersuchung des Metaphase-Stadiums der Zellteilung; äußert sich in Form von Deletionen und Fragmenten, intra-chromosomalen oder reziproken Translokationen.

Zentromere: Region(en) eines Chromosoms, an die die Spindelfasern während der Zellteilung anhaften, wodurch die ordnungsgemäße Beförderung der Tochterchromosomen zu den Polen der Tochterzellen ermöglicht wird.

.

Faktorielles Modell zur Ermittlung geschlechtsspezifischer Differenzen beim In-vivo-Test auf ChromosomenaberrationenAnlage 2

Faktorielles Modell und zugehörige Analysen

Bei diesem Modell werden mindestens 5 männliche und 5 weibliche Tiere je Konzentration getestet, d. h. insgesamt mindestens 40 Versuchstiere (20 männliche und 20 weibliche zuzüglich Positivkontrollen).

Das Modell, das zu den einfacheren Faktormodellen zählt, entspricht einer Zweiwege-Varianzanalyse, bei der Geschlecht und Konzentration im Wesentlichen die Wirkung bestimmen. Die Daten können im Rahmen zahlreicher Standard-Statistiksoftwareanwendungen wie SPSS, SAS, STATA oder Genstat oder auch mit "R" analysiert werden.

Mit der Analyse lässt sich die Varianz im Datensatz als Varianz zwischen den Geschlechtern, Varianz zwischen den Konzentrationen und Varianz bezogen auf die Interaktion zwischen den Geschlechtern und Konzentrationen abbilden. Jede Bedingung wird an einem Schätzwert der Varianz zwischen den Replikattieren in den gleichgeschlechtlichen Tiergruppen, die die gleiche Konzentration erhalten, gemessen. Die zugrundeliegende Methodik ist in vielen Standardwerken zur Statistik (siehe Referenzdokumente) und in den in Statistiksoftware-Paketen mitgelieferten Hilfe-Funktionen näher beschrieben.

Die Analyse beginnt mit der Untersuchung der Interaktionsbedingung "Konzentration x Geschlecht" nach der ANOVA-Tabelle 1. Liegt keine signifikante Interaktion vor, liefern die kombinierten Werte für die Geschlechter oder Konzentrationen gültige statistische Tests für die jeweiligen Konzentrationen, und zwar basierend auf der ANOVA-Bedingung der innerhalb der Gruppe gepoolten Varianzen.

Es folgt eine Partitionierung des Schätzwerts für die Varianzen zwischen den Konzentrationen in Kontraste, die einen Test für lineare und quadratische Kontraste aus den Reaktionen der verschiedenen Konzentrationen liefern. Ergibt sich hingegen eine signifikante Interaktion für Term "Konzentration x Geschlecht", so kann dieser Term auch in Interaktionskontraste "linearer Wert x Geschlecht" und "quadratischer Wert x Geschlecht" partitioniert werden. Aufgrund dieser Terme lässt sich prüfen, ob die Reaktionen der jeweiligen Konzentrationen für beide Geschlechter parallel verlaufen oder ob es zwischen den Geschlechtern zu einer differenzierten Reaktion kommt.

Anhand des Schätzwerts für die innerhalb der Gruppe gepoolten Varianzen lassen sich paarweise Tests auf Abweichungen zwischen Mittelwerten durchführen. Diese Vergleiche könnten zwischen den Mittelwerten für die beiden Geschlechter und zwischen den Mittelwerten für die verschiedenen Konzentrationen durchgeführt werden, beispielsweise um einen Vergleich mit den Negativkontrollen vorzunehmen. In Fällen mit signifikanter Interaktion können Vergleiche zwischen den Mittelwerten verschiedener Konzentrationen innerhalb eines Geschlechts oder zwischen den Mittelwerten beider Geschlechter bei gleicher Konzentration vorgenommen werden.

Referenzdokumente

Es sind viele Werke zur Statistik erhältlich, in denen die Theorie, der Aufbau, die Methodik, die Analyse und die Interpretation faktorieller Analysemodelle erörtert werden, von einfachen Zweifaktorenanalysen bis hin zu komplexeren Formen, wie sie in der "Design of Experiment"-Methode verwendet werden. Die folgende Auflistung ist nicht erschöpfend. Einige Bücher enthalten Beispielrechnungen zu vergleichbaren Versuchsplänen, in einigen Fällen auch mit einem Code zur Durchführung der Analysen unter Verwendung verschiedener Softwarepakete.

Box, G.E.P, Hunter, W.G. and Hunter, J.S. (1978). Statistics for Experimenters. An Introduction to Design, Data Analysis, and Model Building. New York: John Wiley & Sons.

Box G.E.P. & Draper, N.R. (1987). Empirical model-building and response surfaces. John Wiley & Sons Inc.

Doncaster, C.P. & Davey, A.J.H. (2007). Analysis of Variance and Covariance: How to Choose and Construct Models for the Life Sciences. Cambridge University Press.

Mead, R. (1990). The Design of Experiments. Statistical principles for practical application. Cambridge University Press.

Montgomery D.C. (1997). Design and Analysis of Experiments. John Wiley &Sons Inc.

Winer, B.J. (1971). Statistical Principles in Experimental Design. McGraw Hill.

Wu, C.F.J & Hamada, M.S. (2009). Experiments: Planning, Analysis and Optimization. John Wiley & Sons Inc.

______

1) Statistiker, die mit einem Modellierungsansatz wie dem Ansatz der allgemeinen linearen Modelle (GLM) arbeiten, folgen bei der Analyse möglicherweise einem anderen, wenn auch vergleichbarem Ansatz, werden jedoch nicht notwendigerweise eine Herleitung der herkömmlichen Anova-Tabelle vornehmen, die auf algorithmische Lösungswege für statistische Berechnungen aus dem Vor-Computerzeitalter zurückgeht.

UWS Umweltmanagement GmbHweiter.Frame öffnen